Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (3): 690-697    DOI: 10.11720/wtyht.2024.1338
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
可控源音频大地电磁法电阻率与阻抗相位双参数综合判定煤矿双层采空区
秦长春(), 牛峥, 李婧
陕西地矿第二综合物探大队有限公司,陕西 西安 710016
Determining double-layer goafs in coal mines using CSAMT-derived apparent resistivity and impedance phase
QIN Chang-Chun(), NIU Zheng, LI Jing
The Second Comprehensive Geophysical Survey Team Company, Shaanxi Bureau of Geology and Mineral Resources, Xi’an 710016, China
全文: PDF(4081 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地下煤层开采后形成的采空及塌陷会给周围生态环境造成破坏,但目前对于煤矿双层采空区,特别是第二层采空区的探测效果并不理想。针对这一难题,采用高效率可控源音频大地电磁仪采集数据,利用电阻率和阻抗相位双参数综合判断划定采空区:当含水采空区位于浅层时呈现低阻特征,电阻率会出现阴影效应,导致上层目标体的异常范围扩展,不利于下层高阻采空区的识别,而阻抗相位的阴影效应和静态效应均比较小,对于下层采空区的反映比较明显。理论模型测试结果表明,电阻率和阻抗相位双参数结合,可有效判定浅部含水采空区和深部未充水高阻采空区。采用该方法,对陕北侏罗纪煤田神府矿区的双层采空区进行了解释,结果表明该方法推断结果可靠,达到了预期勘查效果。该方法为可控源音频大地电磁法在煤矿双层采空区勘查中的应用提供了新思路,具有良好的技术推广价值和借鉴意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦长春
牛峥
李婧
关键词 可控源音频大地电磁法阻抗相位电阻率双层采空区煤矿    
Abstract

The goaf and subsidence areas formed ue to the mining of subsurface coal seams can cause damage to surrounding ecological environments.At present, the detection effects of double-layer goafs in coal mines, especially the second-layer goafs, are unsatisfactory. In response to this challenge, this study delineated goafs using apparent resistivity and impedance phase derived from the data acquired by an efficient controllable source audio-frequency magnetotelluric instrument. In the case of a shallow water-bearing goaf with low resistivity, the apparent resistivity displays shadow effects, leading to an extended abnormal range of the upper target, which is unfavorable to the identification of the lower high-resistivity goaf. In contrast, the impedance phase, exhibiting minor shadow and static effects, shows a significant response to the lower goaf. As indicated by the theoretical model testing results, the combination of apparent resistivity and impedance phase can effectively determine shallow water-bearing goafs and deep unfilled high-resistivity goafs. This combination method was employed to interpret the double-layer goaf in the Shenfu mining area of the Jurassic coal field in northern Shaanxi, achieving satisfactory results through the mutual verification of the two parameters. Engineering verification results indicate that this method demonstrates reliable inference and expected exploration effects. Overall, this method provides a new approach for CSAMT-based inference and interpretation in the exploration of double-layer goafs in coal mines, thus holding critical technical promotion and reference significance.

Key wordsCSAMT    impedance phase    resistivity    double-layer goaf    coal mine
收稿日期: 2023-08-04      修回日期: 2023-09-13      出版日期: 2024-06-20
ZTFLH:  P631.1  
基金资助:陕西自然科学基金项目(2021JM-159)
作者简介: 秦长春(1984-),男,江苏扬州人,高级工程师,硕士,长期从事地球物理勘查及应用研究工作。Email:1006324483@qq.com
引用本文:   
秦长春, 牛峥, 李婧. 可控源音频大地电磁法电阻率与阻抗相位双参数综合判定煤矿双层采空区[J]. 物探与化探, 2024, 48(3): 690-697.
QIN Chang-Chun, NIU Zheng, LI Jing. Determining double-layer goafs in coal mines using CSAMT-derived apparent resistivity and impedance phase. Geophysical and Geochemical Exploration, 2024, 48(3): 690-697.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1338      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I3/690
岩矿石名称 标本/块 ρ/(Ω·m) η/%
变化范围 常见值 变化范围 算术平均值
泥岩 12 52~143 95 0.43~0.84 0.64
细砂岩 38 102~177 146 0.32~2.60 1.77
粉砂岩 32 173~256 229 0.81~3.27 2.14
煤(节理) 15 447~806 652 2.41~5.25 3.32
15 1207~1780 1237 0.39~4.18 1.79
Table 1  岩石标本电性参数统计
Fig.1  地电模型及数值模拟结果
Fig.2  单点测深视电阻率、相位曲线
Fig.3  UltraEM Z4可控源音频大地电磁系统
Fig.4  测线布设及钻孔位置
Fig.5  268线反演电阻率及相位断面
单一电阻
率推断
电阻率、阻抗相
位联合推断
推断一致度
浅层采
空区
1000~1880 1000~1460、1560~1880 93%
1960~3340 1960~3340
3460~4220 3460~5080
4480~5080
深层采
空区
1000~1180 1000~1180 57%
1380~1460
1640~1840
3100~3220 3100~3220
3340~3540 3340~3540
3880~3960
4340~4500 4340~4500
Table 2  2种方法推断采空区结果对比
Fig.6  120线反演电阻率及相位断面
[1] 张继锋, 孙乃泉, 刘最亮, 等. 电磁法在煤矿水害隐患探测方面的综述[J]. 煤田地质与勘探, 2023, 51(2):301-316.
[1] Zhang J F, Sun N Q, Liu Z L, et al. Electromagnetic methods in the detection of water hazards in coal mines:A review[J]. Coal Geo-logy & Exploration, 2023, 51(2):301-316.
[2] 陈大磊, 陈卫营, 郭朋, 等. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5):1226-1232.
[2] Chen D L, Chen W Y, Guo P, et al. The application of SOTEM method to populated areas:A case study of Fangzi coal mine goaf[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1226-1232.
[3] 杨建军, 吴汉宁, 冯兵, 等. 煤矿采空区探测效果研究[J]. 煤田地质与勘探, 2006, 34(1):67-70.
[3] Yang J J, Wu H N, Feng B, et al. Research on prospecting effect for gob area of coal mines[J]. Coal Geology & Exploration, 2006, 34(1):67-70.
[4] 刘飞, 胡斌, 宋丹, 等. 苏家里新村地面及建筑物裂缝成因分析[J]. 煤田地质与勘探, 2015, 43(6):87-91,96.
[4] Liu F, Hu B, Song D, et al. The genetic analysis of cracks of the ground and buildings in New Sujiali Village[J]. Coal Geology & Exploration, 2015, 43(6):87-91,96.
[5] 任喜荣, 李欣, 周志杰. 等值反磁通瞬变电磁法在金矿采空区探测中的应用[J]. 物探与化探, 2023, 47(2):540-546.
[5] Ren X R, Li X, Zhou Z J. Application of the opposing coils transient electromagnetic method in investigation of mined-out areas of a gold deposit[J]. Geophysical and Geochemical Exploration, 2023, 47(2):540-546.
[6] 苏超, 侯彦威, 王程, 等. CSAMT相位校正及其在煤矿采空积水区探测中的应用[J]. 煤田地质与勘探, 2019, 47(6):180-186.
[6] Su C, Hou Y W, Wang C, et al. CSAMT phase correction and its application in detection of water-accumulating area of goaf in coal mine[J]. Coal Geology & Exploration, 2019, 47(6):180-186.
[7] 席振铢, 龙霞, 周胜, 等. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报, 2016, 59(9):3428-3435.
doi: 10.6038/cjg20160925
[7] Xi Z Z, Long X, Zhou S, et al. Opposing coils transient electromagnetic method for shallow subsurface detection[J]. Chinese Journal of Geophysics, 2016, 59(9):3428-3435.
[8] 薛国强, 陈卫营, 周楠楠, 等. 接地源瞬变电磁短偏移深部探测技术[J]. 地球物理学报, 2013, 56(1):255-261.
[8] Xue G Q, Chen W Y, Zhou N N, et al. Short-offset TEM technique with a grounded wire source for deep sounding[J]. Chinese Journal of Geophysics, 2013, 56(1):255-261.
[9] 薛国强, 于景邨. 瞬变电磁法在煤炭领域的研究与应用新进展[J]. 地球物理学进展, 2017, 32(1):319-326.
[9] Xue G Q, Yu J C. New development of TEM research and application in coal mine exploration[J]. Progress in Geophysics, 2017, 32(1):319-326.
[10] 程久龙, 潘冬明, 李伟, 等. 强电磁干扰区灾害性采空区探地雷达精细探测研究[J]. 煤炭学报, 2010, 35(2):227-231.
[10] Cheng J L, Pan D M, Li W, et al. Study on the detecting of hazard abandoned workings by ground penetrating radar on strong electromagnetic interference area[J]. Journal of China Coal Society, 2010, 35(2):227-231.
[11] 祁民, 张宝林, 梁光河, 等. 高分辨率预测地下复杂采空区的空间分布特征——高密度电法在山西阳泉某复杂采空区中的初步应用研究[J]. 地球物理学进展, 2006, 21(1):256-262.
[11] Qi M, Zhang B L, Liang G H, et al. High-resolution prediction of space distribution characteristics of complicated underground cavities—Preliminary application of high-density electrical technique in an area of Yangquan,Shanxi[J]. Progress in Geophysics, 2006, 21(1):256-262.
[12] 黄群. 应用高密度电测深法和瞬变电磁法探测煤矿采空区[J]. 物探与化探, 2012, 36(S1):107-110.
[12] Huang Q. Application of high density electrical sounding and transient electromagnetic method to detect coal mine goaf[J]. Geophysical and Geochemical Exploration, 2012, 36(S1):107-110.
[13] 李彬, 庹先国, 汪楷洋, 等. 高密度电法三电位电极系装置勘察适用性研究[J]. 煤田地质与勘探, 2015, 43(1):86-90.
[13] Li B, Tuo X G, Wang K Y, et al. Applicability of tri-potential electrode arrays of high density resistivity[J]. Coal Geology & Exploration, 2015, 43(1):86-90.
[14] 李莲英, 薛俊杰, 赵煊煊, 等. 应用综合物探方法探查煤层采空区[J]. 物探与化探, 2017, 41(2):377-380.
[14] Li L Y, Xue J J, Zhao X X, et al. The exploration of mined-out areas by integrated geophysical method[J]. Geophysical and Geochemical Exploration, 2017, 41(2):377-380.
[15] 汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
[15] Tang J T, He J S. Controlled source audio magnetotelluric method and its application[M]. Changsha: Central South University Press, 2005.
[16] 何继善. 可控源音频大地电磁法[M]. 长沙: 中南大学出版社,1990.
[16] He J S. Controlled source audio-frequency magnetotellurics method[M]. Changsha: Central South University Press,1990.
[17] An Z G. Application of the CSAMT method for exploring deep coal mines in Fujian Province,southeastern China[J]. Journal of Environmental & Engineering Geophysics, 2010, 15(4):243-249.
[18] 刘最亮, 张奋轩, 张继锋, 等. 基于CSAMT电场分量的电性标志层深度校正技术及应用[J]. 煤田地质与勘探, 2021, 49(4):24-32.
[18] Liu Z L, Zhang F X, Zhang J F, et al. Depth correction technique of electrical marker based on electrical field component of CSAMT[J]. Coal Geology & Exploration, 2021, 49(4):24-32.
[19] 王绪本, 陈进超, 郭全仕, 等. 沁水盆地北部煤层气富集区CSAMT勘探试验研究[J]. 地球物理学报, 2013, 56(12):4310-4323.
[19] Wang X B, Chen J C, Guo Q S, et al. Research of the CSAMT exploration mode and experiment for the coalbed methane enrichment region in the North Qinshui Basin[J]. Chinese Journal of Geophy-sics, 2013, 56(12):4310-4323.
[20] 刘建利. 大地电磁测深法阻抗相位的特性与应用[J]. 物探与化探, 2013, 37(1):73-77.
[20] Liu J L. Characteristics and application of impedance phase of magnetotelluric sounding method[J]. Geophysical and Geochemical Exploration, 2013, 37(1):73-77.
[1] 陈永凌, 蒋首进, 谢丹, 王嘉, 何志雄, 刘澄. 阿里地区日土县综合物探方法找水研究[J]. 物探与化探, 2024, 48(3): 668-674.
[2] 张巍, 周瑜琨, 刘立岩, 陈俊良. 跨孔电阻率法在城市输水管道渗漏监测中的应用[J]. 物探与化探, 2024, 48(3): 884-890.
[3] 赵自豪, 李鹏慧, 吕海建, 康森. 露天矿台阶对高密度电法勘探影响的实验研究[J]. 物探与化探, 2024, 48(2): 565-572.
[4] 宋涛, 包怡, 赵松, 吴建峰, 许元顺, 涂海峰. 井—电联合勘探与三维地质建模在某填埋场环境调查中的应用[J]. 物探与化探, 2024, 48(1): 272-280.
[5] 黄瑶. 基于三维电阻率法的水电工程隧道地质条件探查[J]. 物探与化探, 2024, 48(1): 281-286.
[6] 刘湘浩, 刘四新, 胡铭奇, 孙中秋, 王千. 基于OMAGA-BP算法的高密度电阻率法反演研究[J]. 物探与化探, 2023, 47(6): 1519-1527.
[7] 张泽奇, 高级, 刘梁, 查华胜, 张海江. 基于三角和线性台阵的煤矿背景噪声成像技术适用性研究[J]. 物探与化探, 2023, 47(6): 1528-1537.
[8] 游希然, 张继锋, 石宇. 基于人工神经网络的瞬变电磁成像方法[J]. 物探与化探, 2023, 47(5): 1206-1214.
[9] 张帆, 冯国瑞, 戚庭野, 余传涛, 张新军, 王超宇, 杜孙稳, 赵德康. 瞬变电磁法勘探煤矿不同层间距双层积水采空区的可行性研究[J]. 物探与化探, 2023, 47(5): 1215-1225.
[10] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[11] 李开富, 马欢, 张艳, 李威龙, 姜纪沂, 黄斌, 章龙管, 秦孟博. 基于时移电阻率法的平谷局部地区地下水时空特征研究[J]. 物探与化探, 2023, 47(4): 1002-1009.
[12] 张丽华, 潘保芝, 单刚义, 阿茹罕, 张鹏济. 基于复电阻率—核磁联测实验的三水模型新形式[J]. 物探与化探, 2023, 47(4): 1018-1023.
[13] 丁志军, 罗维斌, 连伟章, 张星, 何海颦. 基于两步变异差分进化算法的激电测深一维反演[J]. 物探与化探, 2023, 47(4): 1033-1039.
[14] 陈海文, 叶益信, 杨烁健, 覃金生. 基于非结构有限元的电阻率超前探测中旁侧异常影响特征研究[J]. 物探与化探, 2023, 47(4): 975-985.
[15] 齐朝华. 广域电磁法在巨厚低阻层下水文地质勘探中的应用——以安徽淮南某煤矿为例[J]. 物探与化探, 2023, 47(3): 700-706.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com