Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (1): 175-184    DOI: 10.11720/wtyht.2024.1417
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于监督下降法的大地电磁二维反演及应用研究
付兴(), 谭捍东(), 董岩, 汪茂
中国地质大学(北京) 地球物理与信息技术学院,北京 100083
Application of supervised descent method for 2D magnetotelluric inversion and its application
FU Xing(), TAN Han-Dong(), DONG Yan, WANG Mao
School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083,China
全文: PDF(5394 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

传统的大地电磁二维反演方法较为成熟,但仍存在反演结果依赖初始模型和正则化参数选取、容易陷入局部极小值等问题。监督下降法是一种学习平均下降方向来预测数据残差的机器学习算法。本文尝试采用监督下降法解决传统的大地电磁二维反演存在的问题,基于监督下降法理论开发了大地电磁二维反演算法,设计理论模型合成算例验证了算法的正确性,并对西藏高原实测数据进行反演,检验了监督下降法的实用性。理论模型合成数据和实测数据反演结果表明,相较于传统的非线性共轭梯度反演,基于监督下降法的反演具有收敛速度快、反演效果好、抗噪能力强等特点。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付兴
谭捍东
董岩
汪茂
关键词 大地电磁法二维反演机器学习监督下降法非线性共轭梯度反演    
Abstract

Traditional two-dimensional inversion methods of magnetotelluric are mature, but there are still some problems, such as reliance on the initial model, reliance on regularization parameter selection, and easy to fall into local minimum. In order to solve the above problems, this paper adopts the supervised descent method to improve the effect of two-dimensional inversion of magnetotelluric. The supervised descent method is a machine learning algorithm that learns the average descending direction to predict the residual of data. Based on the theory of supervised descent method, this paper develops the two-dimensional inversion algorithm of magnetotelluric, designs the theoretical model synthesis example to verify the correctness of the algorithm, and inverts the measured data on the Tibet Plateau to test the practicability of the supervised descent method. The inversion results of the theoretical model synthesis data and the measured data show that, compared with the traditional nonlinear conjugate gradient inversion, the inversion based on the supervised descent method has the characteristics of fast convergence speed, good inversion effect, and strong anti-noise ability.

Key wordsmagnetotelluric    2D inversion    machine learning    supervised descent method    gradient Non-linear conjugate gradient
收稿日期: 2023-10-13      修回日期: 2023-10-20      出版日期: 2024-02-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(41830429);山西省重点研发计划项目(202102080301001)
通讯作者: 谭捍东(1966-),男,教授,地球探测与信息技术专业,主要从事电法勘探理论及应用研究工作。Email:thd@cugb.edu.cn
作者简介: 付兴(1999-),男,硕士研究生,地球探测与信息技术专业,主要研究方向为机器学习与电法勘探算法。Email:2010210060@email.cugb.edu.cn
引用本文:   
付兴, 谭捍东, 董岩, 汪茂. 基于监督下降法的大地电磁二维反演及应用研究[J]. 物探与化探, 2024, 48(1): 175-184.
FU Xing, TAN Han-Dong, DONG Yan, WANG Mao. Application of supervised descent method for 2D magnetotelluric inversion and its application. Geophysical and Geochemical Exploration, 2024, 48(1): 175-184.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1417      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I1/175
Fig.1  部分单元网格
Fig.2  监督下降流程
Fig.3  部分训练集
Fig.4  迭代过程的模型拟合差
Fig.5  误差分布
Fig.6  理论模型1示意(从左到右分别为异常体1、2、3、4)
Fig.7  预测结果抗噪能力对比
a—高斯误差为0%的预测结果 ;b—高斯误差为10%的预测结果
Fig.8  迭代过程的数据拟合差
Fig.9  理论模型1反演结果对比
a—非线性共轭梯度反演结果;b—监督下降法反演结果
Fig.10  理论模型2示意(从左到右分别为异常体1、2、3、4)
Fig.11  理论模型2反演结果对比
a—非线性共轭梯度反演结果;b—监督下降法反演结果
Fig.12  理论模型3示意
Fig.13  反演结果对比
a—非线性共轭梯度反演结果;b—监督下降法反演结果
Fig.14  原始数据拟断面(空白区域为剔除的坏点)
a—TM模式视电阻率拟断面;b—TM模式相位拟断面;c—TE模式视电阻率拟断面;d—TE模式相位拟断面
Fig.15  实测数据反演结果对比
a—非线性共轭梯度法反演结果;b—监督下降法的反演结果
Fig.16  反演结果与实测数据对比
a—原始数据TM模式视电阻率拟断面;b—原始数据TM模式相位拟断面;c—SDM结果TM模式视电阻率拟断面;d—SDM结果TM模式相位拟断面
[1] 李金铭. 地电场与电法勘探[M]. 武汉: 中国地质大学出版社, 2023.
[1] Li J M. Geoelectric field and electric exploration[M]. Wuhan: China University of Geosciences Press, 2023.
[2] Avdeeva A. Three-dimensional magnetotelluric inversion[D]. Dublin: National University of Ireland, 2008
[3] De Groot-Hedlin C, Constable S. Occam’s inversion to generate smooth,two-dimensional models from magnetotelluric data[J]. Geophysics, 1990, 55(12):1613-1624.
doi: 10.1190/1.1442813
[4] Egbert G D, Kelbert A. Computational recipes for electromagnetic inverse problems[J]. Geophysical Journal International, 2012, 189(1):251-267.
doi: 10.1111/gji.2012.189.issue-1
[5] You K, Zhou C, Ding L Y. Deep learning technology for construction machinery and robotics[J]. Automation in Construction, 2023, 150:104852.
doi: 10.1016/j.autcon.2023.104852
[6] Ding J Q, Xu N, Nguyen M T, et al. Machine learning for molecular thermodynamics[J]. Chinese Journal of Chemical Engineering, 2021, 31(3):227-239.
doi: 10.1016/j.cjche.2020.10.044
[7] Xiong X H, De la Torre F. Supervised descent method and its applications to face alignment[C]// 2013 IEEE Conference on Computer Vision and Pattern Recognition.Portland,OR,USA.IEEE, 2013:532-539.
[8] Xiong X, De-la-Torre F, et al. Supervised descent method(Conference Paper)[J]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2015(7):2664-2673
[9] Zhang T, Guo R, Zhang H L, et al. Image human thorax using ultrasound traveltime tomography with supervised descent method[J]. Applied Sciences, 2022, 12(13):6763.
doi: 10.3390/app12136763
[10] Lin M, Liu Y. Guided wave tomography based on supervised descent method for quantitative corrosion imaging[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control, 2021, 68(12):3624-3636.
doi: 10.1109/TUFFC.2021.3097080
[11] Guo R, Jia Z K, Song X Q, et al. Pixel- and model-based microwave inversion with supervised descent method for dielectric targets[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12):8114-8126.
doi: 10.1109/TAP.8
[12] Guo R, Li M K, Yang F, et al. Application of supervised descent method for 2D magnetotelluric data inversion[J]. Geophysics, 2020, 85(4):WA53-WA65.
doi: 10.1190/geo2019-0409.1
[13] Guo R, Li M K, Fang G Y, et al. Application of supervised descent method to transient electromagnetic data inversion[J]. Geophysics, 2019, 84(4):E225-E237.
doi: 10.1190/geo2018-0129.1
[14] 余年. 大地电磁二、三维倾子正演模拟与联合反演研究[D]. 成都: 成都理工大学, 2012.
[14] Yu N. 2D/3D tipper forward modeling and joint inversion of magnetotelluric[D]. Chengdu: Chengdu University of Technology, 2012.
[15] 林昌洪. 大地电磁张量阻抗三维共轭梯度反演研究[D]. 北京: 中国地质大学(北京), 2009.
[15] Lin C H. Three-dimensional conjugate gradients inversion of magnetotelluric impedance tensor[D]. Beijing: China University of Geosciences(Beijing), 2009.
[16] Newman G A, Alumbaugh D L. Three-dimensional magnetotelluric inversion using non-linear conjugate gradients[J]. Geophysical Journal International, 2000, 140(2):410-424.
doi: 10.1046/j.1365-246x.2000.00007.x
[17] 翁爱华, 刘云鹤, 贾定宇, 等. 地面可控源频率测深三维非线性共轭梯度反演[J]. 地球物理学报, 2012, 55(10):3506-3515.
[17] Weng A H, Liu Y H, Jia D Y, et al. Three-dimensional controlled source electromagnetic inversion using non-linear conjugate gradients[J]. Chinese Journal of Geophysics, 2012, 55(10):3506-3515.
[18] 谭捍东, 魏文博, Martyn Unsworth, 等. 西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究[J]. 地球物理学报, 2004, 47(4):685-690.
[18] Tan H D, Wei W B, Unsworth M, et al. Crustal electrical conductivity structure beneath the Yarlung Zangbo Jiang suture in the southern Xizang Plateau[J]. Chinese Journal of Geophysics, 2004, 47(4):685-690.
[1] 郑孝诚, 张明华, 任伟. 卷积神经网络在山东金矿勘查预测中的应用[J]. 物探与化探, 2023, 47(6): 1433-1440.
[2] 周建兵, 罗锐恒, 贺昌坤, 潘晓东, 张绍敏, 彭聪. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3): 707-717.
[3] 宫明旭, 白利舸, 曾昭发, 吴丰收. 基于机器学习松辽盆地大地热流计算与特征分析[J]. 物探与化探, 2023, 47(3): 766-774.
[4] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[5] 伍显红, 许第桥, 李茂. 宽频大地电磁法在二连盆地铀矿资源评价中的试验应用[J]. 物探与化探, 2022, 46(4): 830-837.
[6] 何帅, 杨炳南, 阮帅, 李永刚, 韩姚飞, 朱大伟. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释[J]. 物探与化探, 2022, 46(3): 618-627.
[7] 秦西社, 马劼, 郭文波, 戚志鹏, 曹华科. 基于反函数原理的可控源大地电磁法全场域视电阻率定义[J]. 物探与化探, 2022, 46(2): 373-382.
[8] 程云涛, 刘俊峰, 曹创华, 王荡. 衡阳盆地西北缘物化探特征及其找矿意义[J]. 物探与化探, 2021, 45(5): 1189-1195.
[9] 余永鹏, 闫照涛, 毛兴军, 杨彦成, 马永祥, 黄鹏程, 陆爱国, 张广兵. 巨厚新生界覆盖区煤炭勘查中的电震综合方法应用[J]. 物探与化探, 2021, 45(5): 1231-1238.
[10] 李帝铨, 肖教育, 张继峰, 胡艳芳, 刘最亮, 张新. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5): 1359-1366.
[11] 赵广学, 阮帅, 吴肃元. 隧道勘探AMT数据二维非线性共轭梯度反演的关键参数探讨[J]. 物探与化探, 2021, 45(2): 480-489.
[12] 魏海民, 李星, 孙帮涛, 周胜, 牛杰. 地球物理方法在帷幕注浆治水中的探测分析[J]. 物探与化探, 2021, 45(1): 245-251.
[13] 陆泽峰. 高山峡谷地区桥址区岩溶发育特征地球物理勘察[J]. 物探与化探, 2021, 45(1): 252-256.
[14] 李飞, 谭捍东, 孟庆敏, 吴俊彦, 丁志强. 二连—东乌旗地区固定翼三频航电数据反演方法应用对比研究[J]. 物探与化探, 2020, 44(5): 1172-1182.
[15] 王志宏, 江民忠, 彭莉红, 程莎莎. 航空大地电磁法在辽宁省丹东地区的应用[J]. 物探与化探, 2020, 44(4): 734-741.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com