Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (4): 962-970    DOI: 10.11720/wtyht.2024.1315
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
综合物探方法在内蒙古敖汉旗林家地地热资源勘查中的应用试验
韩术合1(), 裴秋明2(), 许健3, 宋志勇3, 莫海斌3
1.赤峰市自然资源储备整理中心,内蒙古 赤峰 024000
2.西南交通大学 地球科学与工程学院,四川 成都 611756
3.内蒙古赤峰地质矿产勘查开发有限责任公司,内蒙古 赤峰 024000
Application of comprehensive geophysical prospecting in the exploration of geothermal resources in the Linjiadi area, Aohan Banner, Inner Mongolia
HAN Shu-He1(), PEI Qiu-Ming2(), XU Jian3, SONG Zhi-Yong3, MO Hai-Bin3
1. Chifeng Natural Resources Reserve Collation Center, Chifeng 024000, China
2. Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China
3. Inner Mongolia Chifeng Geological Mineral Exploration and Development Co., Ltd., Chifeng 024000, China
全文: PDF(4495 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在“碳达峰、碳中和”双碳目标背景下,如何科学、高效地进行地热资源的勘查开发是地热产业的关键问题。本文针对目前普遍关注的中深层地热资源勘查技术难题,以内蒙古敖汉旗林家地为研究区,开展了综合地球物理勘探方法的有效性试验研究。在区域地质条件和水文地质条件分析基础上,初步查明了敖汉旗林家地一带地温场特征和地下水化学特征;运用可控源音频大地电磁法(CSAMT)、微动测深和放射性氡气剖面测量多种方法组合,基本查明了研究区地层、岩浆岩及断裂构造的分布,推测了地热异常区控制因素及热水运移情况,并据此设定了勘探孔位,进行了960 m钻探验证。结果表明:综合运用可控源音频大地电磁法和微动测深等物探方法,并结合放射性氡气剖面测量进行辅助验证,对开展中深层地热资源勘查较为有效,可为其他地区地热资源勘查提供方法参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩术合
裴秋明
许健
宋志勇
莫海斌
关键词 可控源音频大地电磁法微动测深放射性氢气剖面测量地热中深层地热资源华北陆块北缘    
Abstract

In the context of the goals of both peak carbon dioxide emissions and carbon neutrality, scientific and efficient exploration and exploitation of geothermal resources are criticalfor the geothermal industry. To address the commonly concernedtechnical challenges in the exploration of moderately deep geothermal resources, this study investigated the effectiveness of comprehensive geophysical prospecting in the exploration of geothermal resources inthe Linjiadi area, Aohan Banner, Inner Mongolia. Based on the analysis ofthe geological and hydrogeological conditions, this studypreliminarilyascertainedthe geothermal field characteristicsand the hydrochemicalcharacteristics of groundwater in the Linjiadi area. By comprehensively employingcontrolled source audio-frequency magnetotellurics (CSAMT), CSAMT; microtremor survey; radioactive radon survey; this study roughly determined the distribution of strata, magmatic rocks, and fault structures in the study area, inferring the factors controllinggeothermal anomaly areas and hot-water migration.Accordingly, exploration boreholes were arranged, allowing for drilling verificationwith a total length of 960 m. The results show that the comprehensiveapplication of CSAMT and microtremor survey, combined with radioactive radon survey for auxiliary verification, is effective in exploringmoderately deep geothermal resources. This study will provide a methodological reference for geothermal resource exploration in other areas.

Key wordsCSAMT    microtremor survey    radioactive radon survey    geothermal resource    moderately deep geothermal resources    northern margin of the North China block
收稿日期: 2023-07-25      修回日期: 2023-10-24      出版日期: 2024-08-20
ZTFLH:  P631  
  P314.3  
基金资助:国家自然科学基金项目(42072313);国家自然科学基金项目(42102334);敖汉旗自然资源局项目“敖汉旗林家地热水汤一带地热资源预可行性勘查”(CFZCAHS-C-F-220017)
通讯作者: 裴秋明(1989-),男,硕士生导师,博士,主要从事地质资源与地质工程领域的教学与科研工作。Email:pqm@swjtu.edu.cn
作者简介: 韩术合(1985-),男,高级工程师,博士,主要从事矿产资源勘查、生态修复等工作。Email:hanshuhe1985@qq.com
引用本文:   
韩术合, 裴秋明, 许健, 宋志勇, 莫海斌. 综合物探方法在内蒙古敖汉旗林家地地热资源勘查中的应用试验[J]. 物探与化探, 2024, 48(4): 962-970.
HAN Shu-He, PEI Qiu-Ming, XU Jian, SONG Zhi-Yong, MO Hai-Bin. Application of comprehensive geophysical prospecting in the exploration of geothermal resources in the Linjiadi area, Aohan Banner, Inner Mongolia. Geophysical and Geochemical Exploration, 2024, 48(4): 962-970.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1315      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I4/962
Fig.1  敖汉旗林家地热水汤一带地质简图
水样编号 取样位置 F-/
(mg·L-1)
H2SiO3/
(mg·L-1)
Na+/
(mg·L-1)
S O 4 2 -/
(mg·L-1)
SH3 德力胡同 0.51 19.2 11.16 54.56
SH7 老阳坡 0.42 18.91 10.40 36.86
SH8 汤西沟 0.45 20.37 11.32 48.66
SH9 变电所 1.85 39.57 66.60 122.39
SH10 黑火药库 0.38 19.79 10.11 36.86
SH11 汤北沟 0.27 18.91 11.12 53.09
SH12 热水汤 0.51 18.04 14.79 92.90
SH13 庙房身 0.60 19.20 12.29 60.46
SH14 车杖子 0.64 20.96 9.13 33.93
SH15 小梁前 0.45 16.89 8.55 36.88
SH16 韩家沟 0.36 24.46 8.52 30.98
SH17 彭家沟 0.38 19.22 9.59 41.31
SH18 大西沟 0.31 25.04 8.03 44.26
SH21 热水汤 0.73 19.78 15.62 66.83
SH22 林家地 2.01 36.17 28.42 41.28
Table 1  地热特有组分水质分析结果
Fig.2  L5线CSAMT反演电阻率推断
Fig.3  微动反演断面
Fig.4  L5氡气综合剖面
Fig.5  综合物探方法结果对比验证
深度范围/m 岩性 厚度/m
0~40.95 粉土 40.95
40.95~53.15 黑云角闪斜长片麻岩 12.20
53.15~59.95 安山质角砾晶屑岩屑凝灰岩 6.80
59.95~75.62 黑云角闪斜长片麻岩 15.67
75.62~94.96 蚀变破碎带 19.34
94.96~148.32 黑云角闪斜长片麻岩 53.36
148.32~153.58 蚀变破碎带 5.26
153.58~575.16 黑云角闪斜长片麻岩、闪长岩 421.58
575.16~580.88 蚀变破碎带 5.72
580.88~608.88 黑云角闪斜长片麻岩 28.00
608.88~633.08 蚀变破碎带 24.20
633.08~665.42 黑云角闪斜长片麻岩 32.34
665.42~695.90 蚀变破碎带 30.48
695.90~934.24 黑云角闪斜长片麻岩、闪长岩 238.34
934.24~937.24 蚀变破碎带 3.00
937.24~958.45 黑云角闪斜长片麻岩 21.21
Table 2  ZK1钻孔地层结构
[1] Long X T, Wang G L, Lin W J, et al. Locating geothermal resources using seismic exploration in Xian County,China[J]. Geothermics, 2023, 112:102747.
[2] 王贵玲, 陆川. 碳中和目标驱动下干热岩和增强型地热系统增产技术发展[J]. 地质与资源, 2023, 32(1):85-95,126.
[2] Wang G L, Lu C. Stimulation technology development of hot dry rock and enhanced geothermal system driven by carbon neutrality target[J]. Geology and Resources, 2023, 32(1):85-95,126.
[3] Baba A, Chandrasekharam D. Geothermal resources for sustainable development:A case study[J]. International Journal of Energy Research, 2022, 46(14):20501-20518.
[4] Yu Z T, Su R Z, Feng C Y. Thermodynamic analysis and multi-objective optimization of a novel power generation system driven by geothermal energy[J]. Energy, 2020, 199:117381.
[5] 庞忠和, 庞菊梅, 孔彦龙, 等. 大型岩溶热储识别方法与规模化可持续开采技术[J]. 科技促进发展, 2020, 16(S1):299-306.
[5] Pang Z H, Pang J M, Kong Y L, et al. Identification method of large-scale Karst thermal storage and large-scale sustainable mining technology[J]. Science & Technology for Development, 2020, 16(S1):299-306.
[6] 黄建军, 周阳, 滕宏泉, 等. 关中盆地西安凹陷地热水赋存特征及其资源量估算[J]. 西北地质, 2021, 54(1):196-203.
[6] Huang J J, Zhou Y, Teng H Q, et al. On the occurrence characteristics and the estimation of geothermal water in Xi'an Sag,Guanzhong Basin[J]. Northwestern Geology, 2021, 54(1):196-203.
[7] 张云辉. 鲜水河断裂康定—磨西段地热系统成因及开发利用研究[D]. 成都: 成都理工大学, 2018.
[7] Zhang Y H. Research on genesis and development of the geothermal system in the Kangding-Moxi segment of the Xianshuihe fault[D]. Chengdu: Chengdu University of Technology, 2018.
[8] 曹锐, 多吉, 李玉彬, 等. 我国中深层地热资源赋存特征、发展现状及展望[J]. 工程科学学报, 2022, 44(10):1623-1631.
[8] Cao R, Duo J, Li Y B, et al. Occurrence characteristics,development status,and prospect of deep high-temperature geothermal resources in China[J]. Chinese Journal of Engineering, 2022, 44(10):1623-1631.
[9] 谭卓英. 岩土工程勘测技术[M]. 北京: 清华大学出版社, 2022.
[9] Tan Z Y. Geotechnical engineering surveytechnology[M]. Beijing: Tsinghua University Press, 2022.
[10] 王军成, 黄仕茂, 徐燕燕. 可控源音频大地电磁法(CSAMT)在茅山地热资源勘查中的应用[J]. 地质学刊, 2018, 42(1):161-166.
[10] Wang J C, Huang S M, Xu Y Y. The application of controlled source audio-frequency magnetotelluric method in geothermal resource exploration in Mount Maoshan,Jiangsu Province[J]. Journal of Geology, 2018, 42(1):161-166.
[11] 张文科, 徐玺萍, 李聪. CSAMT及MT在寻找城市地热资源中的应用[J]. 青海大学学报, 2019, 37(4):77-82.
[11] Zhang W K, Xu X P, Li C. The application of CSAMT and MT in searching for urban geothermal resources[J]. Journal of Qinghai University, 2019, 37(4):77-82.
[12] 黄力军. 可控源音频大地电磁测深法在西藏羊八井地热田勘查中的应用效果[J]. 工程地球物理学报, 2020, 17(6):775-779.
[12] Huang L J. Application effect of controlled source audio-frequency magnetotelluric sounding method in geothermal field of yambajanin Tibet[J]. Chinese Journal of Engineering Geophysics, 2020, 17(6):775-779.
[13] 朱怀亮, 胥博文, 刘志龙, 等. 大地电磁测深法在银川盆地地热资源调查评价中的应用[J]. 物探与化探, 2019, 43(4):718-725.
[13] Zhu H L, Xu B W, Liu Z L, et al. The application of magnetotelluric sounding to geothermal resources assessment in Yinchuan Basin[J]. Geophysical and Geochemical Exploration, 2019, 43(4):718-725.
[14] 王佳龙, 邸兵叶, 张宝松, 等. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3):576-582.
[14] Wang J L, Di B Y, Zhang B S, et al. The application of audio frequency magnetotelluric method to the geothermal exploration:A case study of Huangniqiao Area,Ninghua County,Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3):576-582.
[15] 崔玉贵, 姜月华, 刘林, 等. 高密度电法在江西于都黄麟地区地热勘查中的应用[J]. 华东地质, 2020, 41(4):368-374.
[15] Cui Y G, Jiang Y H, Liu L, et al. Application of high-density resistivity method in geothermal exploration in Huanglin Area of Yudu County,Jiangxi Province[J]. East China Geology, 2020, 41(4):368-374.
[16] 高博涵, 敬荣中, 赵毅, 等. 综合物探方法在火成岩区寻找地热资源的探讨——以山西省某地区地热勘查为例[J]. 矿产与地质, 2021, 35(5):947-952.
[16] Gao B H, Jing R Z, Zhao Y, et al. Discussion on comprehensive geophysical method in searching for geothermal resources in igneous rock area:An example of geothermal exploration in a certain area of Shanxi[J]. Mineral Resources and Geology, 2021, 35(5):947-952.
[17] 赵宝峰, 汪启年, 陈同刚. 地球物理方法在带状热储地热资源调查中的应用——以湖南省汝城县热水镇朱屋区为例[J]. 物探化探计算技术, 2019, 41(6):806-812.
[17] Zhao B F, Wang Q N, Chen T G. The application of geophysical methods in the investigation of geothermal resources with banded reservoir—Taking an example of Zhuwu favorable area,in Hot Water town,Rucheng County,Hunan Province[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(6):806-812.
[18] 董耀, 李光辉, 高鹏举, 等. 微动勘查技术在地热勘探中的应用[J]. 物探与化探, 2020, 44(6):1345-1351.
[18] Dong Y, Li G H, Gao P J, et al. The application of fretting exploration technology in the exploration of middle and deep clean energy[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1345-1351.
[19] 刘杨, 盛勇, 贾慧涛. 利用微动高分辨率频率—波数谱法探测技术勘探地热资源[J]. 工程地球物理学报, 2021, 18(1):35-43.
[19] Liu Y, Sheng Y, Jia H T. Prospecting geothermal resource based on microtremor high-resolution frequency-wavenumber spectrum detection technique[J]. Chinese Journal of Engineering Geophysics, 2021, 18(1):35-43.
[20] 梁雨东, 任康辉, 姜鑫, 等. 活性炭测氡法在地热勘探中的应用——以张掖—民乐盆地为例[J]. 物探与化探, 2022, 46(6):1419-1424.
[20] Liang Y D, Ren K H, Jiang X, et al. Application of the activated charcoal radon measurement in the geothermal exploration:A study of the Zhangye-Minle Basin[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1419-1424.
[21] 葛志广, 陈永生, 于秋生, 等. 综合地球物理勘探在辽西绥中地区地热资源勘查中的应用[J]. 工程地球物理学报, 2017, 14(4):481-486.
[21] Ge Z G, Chen Y S, Yu Q S, et al. The application of comprehensive geophysical exploration technique to exploration of geothermal resources in Suizhong district of western Liaoning Province[J]. Chinese Journal of Engineering Geophysics, 2017, 14(4):481-486.
[22] 刘会毅, 徐坤, 国吉安, 等. 综合物探方法在安徽沱湖地区地热勘查中的应用[J]. 工程地球物理学报, 2018, 15(5):648-654.
[22] Liu H Y, Xu K, Guo J A, et al. Application of integrated geophysical method to geothermal exploration in tuohu area of Anhui Province[J]. Chinese Journal of Engineering Geophysics, 2018, 15(5):648-654.
[23] 皮伟, 邓国成, 吴侠. 地球物理方法在武川盆地地热勘查中的应用[J]. 矿产勘查, 2019, 10(8):2015-2022.
[23] Pi W, Deng G C, Wu X. Application of geophysical methods in geothermal exploration in Wuchuan Basin[J]. Mineral Exploration, 2019, 10(8):2015-2022.
[24] 裴发根, 张小博, 王绪本, 等. 综合地球物理勘探在齐齐哈尔地区低温地热系统调查中的应用——以HLD1井为例[J]. 地球物理学进展, 2021, 36(4):1432-1442.
[24] Pei F G, Zhang X B, Wang X B, et al. Application in geothermal survey of low temperature system by integrated geophysical exploration in the Qiqihar Area:Take the well HLD1 as an example[J]. Progress in Geophysics, 2021, 36(4):1432-1442.
[25] 王军成, 赵振国, 高士银, 等. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2):321-330.
[25] Wang J C, Zhao Z G, Gao S Y, et al. Application of a comprehensive geophysical exploration methods in the exploration of geothermal resources in Yueliangwan,Binhai County[J]. Geophysical and Geochemical Exploration, 2023, 47(2):321-330.
[26] 张一, 刘鹏磊, 王玉敏, 等. 综合物探技术在济南北部地热勘查中的应用[J]. 物探与化探, 2024, 48(1):58-66.
[26] Zhang Y, Liu P L, Wang Y M, et al. Application of integrated geophysical exploration technology in the geothermal exploration of northern Jinan[J]. Geophysical and Geochemical Exploration, 2024, 48(1):58-66.
[27] 赵志伟, 刘锐, 蔺鹏飞, 等. 基于MORPAS的敖汉旗林家地金多金属成矿远景区预测[J]. 矿产勘查, 2022, 13(6):785-796.
[27] Zhao Z W, Liu R, Lin P F, et al. The prediction of gold and other polymetallic metallogenic prospective area in the Linjiadi Area of Aohanqi based on MORPAS[J]. Mineral Exploration, 2022, 13(6):785-796.
[28] 刘英. 内蒙古敖汉旗热水汤地热田地热成因、评价与开发利用研究[D]. 北京: 中国地质大学(北京), 2009.
[28] Liu Y.A study on formation、 evaluation、exploitation and utilization of geothermal resources in the aohanqireshuitang geothermal field,Inner Mongolia[D]. Beijing: China University of Geosciences(Beijing), 2009.
[1] 张继伟, 谭慧. 可控源音频大地电磁和微动资料的拟二维联合反演[J]. 物探与化探, 2024, 48(4): 1094-1102.
[2] 刘宏凯, 高磊, 张杰, 侯贺晟, 谢民英, 李洪强. 反射地震剖面揭示容城凸起基岩面和断裂结构及其对地热成因的启示[J]. 物探与化探, 2024, 48(4): 934-944.
[3] 秦长春, 牛峥, 李婧. 可控源音频大地电磁法电阻率与阻抗相位双参数综合判定煤矿双层采空区[J]. 物探与化探, 2024, 48(3): 690-697.
[4] 张一, 刘鹏磊, 王玉敏, 张朋朋, 张超, 张宁. 综合物探技术在济南北部地热勘查中的应用[J]. 物探与化探, 2024, 48(1): 58-66.
[5] 郑浩, 崔月, 许璐, 齐鹏. 华南火成岩区深层地热勘探地震处理关键技术[J]. 物探与化探, 2024, 48(1): 88-97.
[6] 程正璞, 连晟, 魏强, 胡文广, 雷鸣, 李戍. 雄安新区深部雾迷山组热储层时频电磁法探测研究[J]. 物探与化探, 2023, 47(6): 1400-1409.
[7] 杨明远, 张汉雄, 马超, 杨海磊, 朱威. AMT在新疆三屯河地区地下赋水性研究中的应用[J]. 物探与化探, 2023, 47(6): 1441-1449.
[8] 郑旭莹, 许科伟, 顾磊, 王国建, 李广之, 郭嘉琪, 邹雨, 腾格尔. 典型地热田环境微生物分布特征及其勘探意义[J]. 物探与化探, 2023, 47(5): 1127-1136.
[9] 赵宝峰, 汪启年, 郭信, 官大维, 陈同刚, 方雯. 汝城盆地深部构造及地热资源赋存潜力——基于重力与AMT探测的认识[J]. 物探与化探, 2023, 47(5): 1147-1156.
[10] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[11] 张昭, 殷全增, 张龙飞, 张大明, 张世晖, 黄国疏, 赵石峰, 杨彪, 台立勋, 张灯亮, 王进朝, 段刚. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
[12] 宫明旭, 白利舸, 曾昭发, 吴丰收. 基于机器学习松辽盆地大地热流计算与特征分析[J]. 物探与化探, 2023, 47(3): 766-774.
[13] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[14] 韩元红, 申小龙, 李兵, 徐德才, 贾志刚, 吴大林, 王伟, 吕俊. 基于综合物探的关中眉县构造裂隙型地热水靶区预测及钻孔验证[J]. 物探与化探, 2023, 47(1): 65-72.
[15] 孙海川. 兰州新区西部恐龙园区块地热地质条件分析[J]. 物探与化探, 2022, 46(6): 1411-1418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com