Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (2): 498-507    DOI: 10.11720/wtyht.2024.1144
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于人工神经网络的大地电磁时序分类研究
杨凯1,2(), 刘诚1, 贺景龙1, 李含1, 姚川1
1.中国地质调查局 西安矿产资源调查中心,陕西 西安 710100
2.中国地质大学(武汉) 地球物理与空间信息学院,湖北 武汉 430074
Research on magnetotelluric time series classification based on artificial neural network
YANG Kai1,2(), LIU Cheng1, HE Jing-Long1, Li Han1, YAO Chuan1
1. Xi’an Center of Mineral Resources Survey,China Geological Survey,Xi’an 710100,China
2. School of Geophysics and Geomatics,China University of Geosciences(Wuhan),Wuhan 430074,China
全文: PDF(6330 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

随着社会的发展,各类干扰日益加剧,高质量的大地电磁采集也变得愈加困难。为了提高数据质量,学者们针对不同类型的噪声提出了很多对应的去噪方法,由于大地电磁数据量都比较大,去噪前不可能对每条数据进行人工判读,急需一种高效率的噪声识别和分类方法。基于此,本文将人工神经网络应用于大地电磁时间序列分类中,为了选取最为合适的大地电磁时间序列分类网络模型,使用模拟方波、工频、脉冲噪声以及实测无噪声数据4类时间序列类型,分别对LSTM、FCN、ResNet、LSTM-FCN及LSTM-ResNet模型进行了噪声分类训练和实测数据分类对比试验。结果表明,FCN及LSTM-FCN在大地电磁时序分类中具有相对较好的效果。其中,FCN模型对实测数据分类准确率最高可达99.84%,每个epoch平均用时9.6 s, LSTM-FCN较FCN具有更高的分类精度,实测数据集最高分类准确率近乎100%,但是其每个epoch平均用时24.6 s,且较FCN也更易过拟合。总体来看,如果数据量较少使用LSTM-FCN可以获取更高的分类精度,数据量较大时需考虑时间成本,使用FCN则更为合适。最后,利用LSTM-FCN分类模型和LSTM去噪模型搭建了大地电磁噪声处理系统,对含有不同类型噪声的大地电磁数据进行了成功处理。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨凯
刘诚
贺景龙
李含
姚川
关键词 大地电磁时间序列分类人工神经网络深度学习噪声    
Abstract

With the development of society,high-quality magnetotelluric signal acquisition is becoming more and more difficult because of various types of human interference are increasingly intensified. Scholars have proposed many corresponding denoising methods for different types of noise to improve data quality. It is impossible to manually interpret each data before denoising due to the huge amount of data. So an efficient noise recognition and classification method is urgently needed. Based on this, artificial neural network is applied in the classification of magnetotelluric time series in this paper. Four types of time series,namely,simulated square wave, power frequency, impulse noise, and measured noiseless data, were used to conduct noise classification training and measured data classification on LSTM、FCN、ResNet、LSTM-FCN and LSTM-ResNet models. The results show that FCN and LSTM-FCN has a relatively good effect on the classification of magnetotelluric time series. Among them, the highest classification accuracy of FCN measured data can reach 99.84%, and the average time for each epoch is 9.6 s. LSTM-FCN has higher classification accuracy than FCN,the highest classification accuracy of measured data sets is nearly 100%, but the average time for each epoch is 24.6 s, and it is easier to overfit than FCN. Overall, LSTM-FCN can achieve higher classification accuracy when the amount of data is relatively small, if the amount of data is large, it is necessary to consider the time cost,using FCN is more appropriate. Finally,the magnetotelluric data containing different types of noise was successfully processed using the magnetotelluric noise processing system which constructed by the LSTM-FCN classification model and the LSTM denoising model.

Key wordsmagnetotellurics    time series classification    artificial neural network    deep learning    noise
收稿日期: 2023-04-10      修回日期: 2023-09-06      出版日期: 2024-04-20
ZTFLH:  P631  
基金资助:陕西省科学基金项目“戈壁荒漠浅覆盖区萤石矿深部定位预测技术示范研究”(2023-JC-QN-0365)
作者简介: 杨凯(1991-),男,2013年毕业于长安大学地球物理学专业,在读硕士、工程师,主要从事物探数据处理工作。Email:yangkaicgs@163.com
引用本文:   
杨凯, 刘诚, 贺景龙, 李含, 姚川. 基于人工神经网络的大地电磁时序分类研究[J]. 物探与化探, 2024, 48(2): 498-507.
YANG Kai, LIU Cheng, HE Jing-Long, Li Han, YAO Chuan. Research on magnetotelluric time series classification based on artificial neural network. Geophysical and Geochemical Exploration, 2024, 48(2): 498-507.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1144      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I2/498
Fig.1  LSTM神经元基本结构
Fig.2  LSTM结构示意
Fig.3  FCN结构示意
Fig.4  残差学习块[17]
Fig.5  本文残差块
Fig.6  ResNet结构示意
Fig.7  LSTM-FCN结构示意
Fig.8  LSTM-ResNet结构示意
Fig.9  训练集部分时间序列
Fig.10  各网络训练曲线
神经网络模型 实测数据最高
分类准确率/%
训练时间/
(s·epoch-1)
LSTM 99.41 19.8
FCN 99.84 9.6
ResNet 98.73 11.4
LSTM-FCN 100 24.6
LSTM-ResNet 98.40 25.8
Table 1  各神经网络参数对比
Fig.11  实测数据集部分时间序列
Fig.12  实测数据集分类精度对比
Fig.13  去噪系统示意
Fig.14  模拟含噪数据去噪结果比对(部分)
[1] 孙洁, 晋光文, 白登海, 等. 大地电磁测深资料的噪声干扰[J]. 物探与化探, 2000, 24(2):119-127.
[1] Sun J, Jin G W, Bai D H, et al. The noise interference of magnetotelluric sounding data[J]. Geophysical and Geochemical Exploration, 2000, 24(2):119-127.
[2] 严家斌. 大地电磁信号处理理论及方法研究[D]. 长沙: 中南大学, 2003.
[2] Yan J B. Research on theory and method of magnetotelluric signal processing[D]. Changsha: Central South University, 2003.
[3] 蔡剑华. 基于Hilbert-Huang变换的大地电磁信号处理方法与应用研究[D]. 长沙: 中南大学, 2010.
[3] Cai J H. Research on magnetotelluric signal processing method and application based on Hilbert-Huang transform[D]. Changsha: Central South University, 2010.
[4] 周聪, 汤井田, 原源, 等. 强干扰区含噪电磁场的时空分布特征[J]. 吉林大学学报:地球科学版, 2020, 50(6):1870-1886.
[4] Zhou C, Tang J T, Yuan Y, et al. Spatial and temporal distribution characteristics of electromagnetic fields in strong noise area[J]. Journal of Jilin University:Earth Science Edition, 2020, 50(6):1870-1886.
[5] 葛双超, 李斌. 大地电磁法人文噪声干扰特点及处理方法综述[J]. 物探化探计算技术, 2021, 43(5):609-619.
[5] Ge S C, Li B. Review of the characteristics and processing methods of human noise interference in magnetotelluric[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2021, 43(5):609-619.
[6] 杨一鸣, 潘嵘, 潘嘉林, 等. 时间序列分类问题的算法比较[J]. 计算机学报, 2007, 30(8):1259-1266.
[6] Yang Y M, Pan R, Pan J L, et al. A comparative study on time series classification[J]. Chinese Journal of Computers, 2007, 30(8):1259-1266.
[7] 杨梦晨, 陈旭栋, 蔡鹏, 等. 早期时间序列分类方法研究综述[J]. 华东师范大学学报:自然科学版, 2021(5):115-133.
[7] Yang M C, Chen X D, Cai P, et al. Survey of early time series classification methods[J]. Journal of East China Normal University:Natural Science, 2021(5):115-133.
[8] 沈旭东. 基于深度学习的时间序列算法综述[J]. 信息技术与信息化, 2019(1):71-76.
[8] Shen X D. A survey of time series algorithms based on deep learning[J]. Information Technology and Informatization, 2019(1):71-76.
[9] Mehak K. 时间序列分类的端到端深度学习方法[D]. 哈尔滨: 哈尔滨工业大学, 2021.
[9] Mehak K. End-to-end deep learning method for time series classification[D]. Harbin:Harbin Institute of Technology, 2021.
[10] Manoj C, Nagarajan N. The application of artificial neural networks to magnetotelluric time-series analysis[J]. Geophysical Journal International, 2003, 153(2):409-423.
doi: 10.1046/j.1365-246X.2003.01902.x
[11] 许滔滔, 王中兴, 肖卓伟, 等. 基于LSTM循环神经网络的大地电磁工频干扰压制[J]. 地球物理学进展, 2020, 35(5):2016-2022.
[11] Xu T T, Wang Z X, Xiao Z W, et al. Magnetotelluric power frequency interference suppression based on LSTM recurrent neural network[J]. Progress in Geophysics, 2020, 35(5):2016-2022.
[12] 王斯昊, 何兰芳. 基于LSTM循环神经网络的MT时间序列去噪可行性分析[C]// 中国地球物理学会地球物理技术委员会第九届学术会议—全域地球物理探测与智能感知学术研讨会会议摘要集, 2021.
[12] Wang S H, He L F. Feasibility analysis of the LSTM based denoising to MT time series[C]// The 9th Conference of Geophysical Technology,Chinese Geophysical Society—Abstracts of Symposium on Full-Space Geophysical Exploration and Intelligent Sensing, 2021.
[13] 汪凯翔, 黄清华, 吴思弘. 长短时记忆神经网络在地电场数据处理中的应用[J]. 地球物理学报, 2020, 63(8):3015-3024.
doi: 10.6038/cjg2020O0119
[13] Wang K X, Huang Q H, Wu S H. Application of long short-term memory neural network in geoelectric field data processing[J]. Chinese Journal of Geophysics, 2020, 63(8):3015-3024.
[14] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276
[15] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683 pmid: 27244717
[16] Wang Z G, Yan W Z, Oates T. Time series classification from scratch with deep neural networks:A strong baseline[C]// 2017 International Joint Conference on Neural Networks (IJCNN).Anchorage,AK,USA.IEEE, 2017:1578-1585.
[17] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA.IEEE, 2016:770-778.
[18] 刘晨, 赵晓晖, 梁乃川, 等. 基于ResNet50和迁移学习的岩性识别与分类研究[J]. 计算机与数字工程, 2021, 49(12):2526-2530,2578.
[18] Liu C, Zhao X H, Liang N C, et al. Research on lithology identification and classification based on ResNet50 and transfer learning[J]. Computer & Digital Engineering, 2021, 49(12):2526-2530,2578.
[19] 张雅雯. 基于残差网络的时间序列的分类算法研究[D]. 北京: 北京交通大学, 2020.
[19] Zhang Y W. Research on classification algorithm of time series based on residual network[D]. Beijing: Beijing Jiaotong University, 2020.
[20] Karim F, Majumdar S, Darabi H, et al. LSTM fully convolutional networks for time series classification[J]. IEEE Access, 2017, 6:1662-1669.
doi: 10.1109/ACCESS.2017.2779939
[21] Karim F, Majumdar S, Darabi H, et al. Multivariate LSTM-FCNs for time series classification[J]. Neural Networks, 2019, 116:237-245.
doi: S0893-6080(19)30120-0 pmid: 31121421
[22] 王琛, 王颖, 郑涛, 等. 基于ResNet-LSTM网络和注意力机制的综合能源系统多元负荷预测[J]. 电工技术学报, 2022, 37(7):1789-1799.
[22] Wang C, Wang Y, Zheng T, et al. Multi-energy load forecasting in integrated energy system based on ResNet-LSTM network and attention mechanism[J]. Transactions of China Electrotechnical Society, 2022, 37(7):1789-1799.
[23] 叶兴扬, 韦张跃昊, 严卉, 等. 基于ResNet和Bi-LSTM模型融合的心电信号分类[J]. 航天医学与医学工程, 2021, 34(3):244-251.
[23] Ye X Y, Wei Z Y H, Yan H, et al. ECG signal classification based on fusion model of res nte and Bi-LSTM network[J]. Space Medicine & Medical Engineering, 2021, 34(3):244-251.
[24] Kingma D P, Ba J. Adam:A method for stochastic optimization[J]. ArXiv e-Prints,2014:arXiv:1412.6980.
[25] 杨凯, 唐卫东, 刘诚, 等. 基于LSTM循环神经网络的大地电磁方波噪声抑制[J]. 物探与化探, 2022, 46(4):925-933.
[25] Yang K, Tang W D, Liu C, et al. Suppression of magnetotelluric square wave noise based on a LSTM recurrent neural network[J]. Geophysical and Geochemical Exploration, 2022, 46(4):925-933.
[1] 何俊飞. 综合物探在新兴都斛铜矿床勘查中的应用[J]. 物探与化探, 2024, 48(2): 375-381.
[2] 刘迪, 杨涛, 宋华东, 李广超, 毋光荣, 郭良春, 张锦想. 基于功率谱密度筛选的高海拔区背景噪声快速成像技术[J]. 物探与化探, 2024, 48(2): 437-442.
[3] 郝社锋, 田少兵, 梅荣, 彭荣华, 李兆令. 高干扰矿集区大地电磁噪声抑制技术探索[J]. 物探与化探, 2024, 48(1): 162-174.
[4] 付兴, 谭捍东, 董岩, 汪茂. 基于监督下降法的大地电磁二维反演及应用研究[J]. 物探与化探, 2024, 48(1): 175-184.
[5] 张一, 刘鹏磊, 王玉敏, 张朋朋, 张超, 张宁. 综合物探技术在济南北部地热勘查中的应用[J]. 物探与化探, 2024, 48(1): 58-66.
[6] 李思平, 刘彩云, 熊杰, 田慧潇, 王方. 基于改进残差网络的大地电磁反演研究[J]. 物探与化探, 2023, 47(6): 1508-1518.
[7] 张泽奇, 高级, 刘梁, 查华胜, 张海江. 基于三角和线性台阵的煤矿背景噪声成像技术适用性研究[J]. 物探与化探, 2023, 47(6): 1528-1537.
[8] 游希然, 张继锋, 石宇. 基于人工神经网络的瞬变电磁成像方法[J]. 物探与化探, 2023, 47(5): 1206-1214.
[9] 周慧, 孙成禹, 刘英昌, 蔡瑞乾. 基于DC-UNet卷积神经网络的强噪声压制方法[J]. 物探与化探, 2023, 47(5): 1288-1297.
[10] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[11] 张阳阳, 杜威, 王芝水, 缪旭煌, 张翔. 基于Lévay飞行的粒子群算法在大地电磁反演中的应用[J]. 物探与化探, 2023, 47(4): 986-993.
[12] 游越新, 邓居智, 陈辉, 余辉, 高科宁. 综合物探方法在云南澜沧老厂多金属矿区深部找矿中的应用[J]. 物探与化探, 2023, 47(3): 638-647.
[13] 周建兵, 罗锐恒, 贺昌坤, 潘晓东, 张绍敏, 彭聪. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3): 707-717.
[14] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[15] 贺景龙, 王占彬, 寇少磊, 杨凯. 基于C#的MTU系列大地电磁测深仪数据文件的研究与应用[J]. 物探与化探, 2023, 47(1): 171-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com