Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (4): 1146-1156    DOI: 10.11720/wtyht.2024.1347
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
东平湖表层沉积物重金属环境容量评价及趋势预测
于林松1,2(), 胡蕾2,3, 王东平2,3, 刘辉3, 陈子万4(), 李华勇1, 邓焕广5
1.安阳师范学院 资源环境与旅游学院,河南 安阳 455000
2.山东省地质勘查工程技术研究中心,山东 济南 250013
3.山东省物化探勘查院,山东 济南 250013
4.云南省地质调查院,云南 昆明 650216
5.聊城大学 地理与环境学院,山东 聊城 252000
Assessment and trend prediction of the environmental capacity of heavy metals in surface sediments of the Dongping Lake, North China
YU Lin-Song1,2(), HU Lei2,3, WANG Dong-Ping2,3, LIU Hui3, CHEN Zi-Wan4(), LI Hua-Yong1, DENG Huan-Guang5
1. School of Resources Enviroment and Tourism, Anyang Normal University, Anyang 455000, China
2. Shandong Geological Exploration Engineering Technology Research Center, Jinan 250013, China
3. Shandong Provincial Institute of Physical & Chemical Exploration, Jinan 250013, China
4. Yunnan Institute of Geological Survey,Kunming 650216, China
5. School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
全文: PDF(3599 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

湖泊沉积物环境容量是评价湖泊系统环境承载力的重要指标, 可有效反映湖泊系统的稳定性和可持续发展能力。以黄河流域下游东平湖为研究对象, 对表层沉积物中的As、Cd、Cr、Co、Cu、Hg、Mn、Ni、Pb、Tl和Zn共11种重金属元素进行采样和测定, 采用统计分析和GIS技术对重金属含量及环境承载力空间分布进行讨论, 并对重金属百年尺度环境容量变化趋势进行预测。结果表明:①研究区沉积物中As最大值超过土壤污染风险筛选值(允许限值), 其余元素均低于允许限值。②重金属单项环境容量指数(Pi)均值排序为:Hg > Pb > Cr > Ni > Zn > Cd > Cu > Co > Mn > Tl > As, 其中As存在过载水平和警戒水平点位, Mn和Tl存在警戒水平点位; 经计算, 研究区综合容量指数(PI)介于中容量至高容量水平, 而以“单项环境容量指数劣等水平”衡量的综合容量等级显示, 研究区中容量至过载水平均有分布。③重金属静态年容量限值和动态年容量排序分别为:Mn > Zn > Cr > Ni > Cu > Pb > As > Co > Tl > Cd > Hg和Mn > Zn > Cr > Ni > Pb > Cu > Co > As > Hg > Cd > Tl; 静态年容量限值和动态年容量分别在5~40年和5~15年年限内呈现由陡倾转缓的降低趋势, 之后趋于平缓稳定; 不同年限平均动态年容量均大于静态年容量限值, 表现出对环境的容纳承载能力较好。本研究揭示了东平湖环境容量现状及未来变化趋势, 可为湖泊环境质量评价和生态保护修复提供科学依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于林松
胡蕾
王东平
刘辉
陈子万
李华勇
邓焕广
关键词 表层沉积物重金属环境容量趋势预测东平湖    
Abstract

The environmental capacity of lake sediments serves as a significant indicator for assessing the environmental carrying capacity of lake systems, effectively reflecting the stability and sustainability of lake systems.This study investigated the Dongping Lake in the lower reaches of the Yellow River basin by determining 11 heavy metal elements, including As, Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, Tl, and Zn, in the sampled surface sediments. It delved into the spatial distributions of heavy metal contents and environmental carrying capacity using statistical analysis and geographical information system (GIS) technology. Moreover, it predicted the trend of environmental capacity changes of heavy metals at a centennial scale. The results indicate that: (1) The maximum content of As in the surface sediments of the study area exceededits risk screening value (allowable limit) for soil contamination, whereas those of other elements were below corresponding allowable limits;(2) The average single environmental capacity index (Pi) values of heavy metal elements decreased in the order of Hg, Pb, Cr, Ni, Zn, Cd, Cu, Co, Mn, Tl, and As. Among these heavy metal elements, As displayed overload level and warning level points, whereas Mn and Tl manifested warning level points. The composite capacity index (Pi) was calculated to be between medium and high capacity levels. The composite capacity level measured based on the inferior level of Pi suggests a medium capacity to overload level distribution in the study area;(3) The static annual capacity limits of heavy metal elements decreased in the order of Mn, Zn, Cr, Ni, Cu, Pb, As, Co, Tl, Cd, and Hg, whereas the dynamic annual capacity limits decreased in the order of Mn, Zn, Cr, Ni, Pb, Cu, Co, As, Hg, Cd, and Tl. The static and dynamic capacity limits will show a steeply to gently decreasing trend in the 5~40 years and 5~15 years, respectively, followed by a gentle and stable trend. Regardless of the number of years, the average dynamic annual capacity limit is higher than the average static one, suggesting a high environmental carrying capacity.This study reveals the current status and future trends of environmental capacity in the Dongping Lake, providing a scientific basis for the environmental quality assessment and ecological conservation and restoration of the lake.

Key wordssurface sediment    heavy metal    environmental capacity    trend prediction    Dongping Lake
收稿日期: 2023-08-09      修回日期: 2023-11-20      出版日期: 2024-08-20
ZTFLH:  X142  
基金资助:河南省科技攻关项目(232102321109);安阳师范学院科研基金项目(2024BSKYQD015);山东省地质矿产勘查开发局科技创新项目(KY202227);聊城大学科研基金项目(318011909)
通讯作者: 陈子万(1985-),男,高级工程师,地球化学专业,主要从事环境地球化学相关工作。Email:ChenZW_cdut@outlook.com
作者简介: 于林松(1980-),男,正高级工程师,地球化学专业,主要从事地质及地球化学相关工作。Email:sean_yls@163.com
引用本文:   
于林松, 胡蕾, 王东平, 刘辉, 陈子万, 李华勇, 邓焕广. 东平湖表层沉积物重金属环境容量评价及趋势预测[J]. 物探与化探, 2024, 48(4): 1146-1156.
YU Lin-Song, HU Lei, WANG Dong-Ping, LIU Hui, CHEN Zi-Wan, LI Hua-Yong, DENG Huan-Guang. Assessment and trend prediction of the environmental capacity of heavy metals in surface sediments of the Dongping Lake, North China. Geophysical and Geochemical Exploration, 2024, 48(4): 1146-1156.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1347      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I4/1146
Fig.1  研究区位置及表层沉积物采样点
序号 指标 测试方法及仪器设备 检出限
1 pH 电位法(PHS-3C, 上海精密科学仪器有限公司, 中国) 0.01
2 As 氢化物—原子荧光光谱法(AFS9750, 北京海光仪器, 中国) 1
3 Cd、Co、Cu、Ni、Pb、Tl 等离子体质谱法(ICP-MS, Element XR, Thermo Fisher Scientific, USA) 0.03、1、1、2、2、0.1
4 Cr、Mn、Zn 等离子体光学发射光谱法(ICP-OES, Optima 8000DV, PerkinElmer, USA) 5、10、2
5 Hg 冷蒸气—原子荧光光谱法(AFS9750, 北京海光仪器, 中国) 0.0005
Table 1  pH和重金属元素分析方法及检出限
参数 As Cd Co Cr Cu Hg Mn Ni Pb Tl Zn
均值 18.27 0.223 16.81 71.64 38.13 0.089 689.0 39.96 29.08 0.689 88.30
中值 19.10 0.237 17.50 72.20 39.80 0.044 662.0 41.70 29.90 0.685 86.80
众数 19.80 0.064 14.90 48.30 36.10 0.050 486.7 44.70 29.70 0.660 86.20
最小值 9.33 0.064 10.70 48.30 17.50 0.021 486.7 24.20 19.90 0.560 45.00
最大值 31.00 0.377 23.50 92.50 64.60 1.536 1007.2 52.00 37.50 0.870 214.00
标准差 5.13 0.08 2.59 9.14 9.78 0.25 126.04 6.26 4.02 0.07 27.23
变异系数 28.1 36.4 15.4 12.6 25.6 285.6 18.3 15.7 13.8 9.5 30.8
偏度 0.28 -0.19 -0.24 -0.28 0.09 5.88 0.63 -0.87 -0.45 0.56 2.82
峰度 0.11 -0.45 1.04 0.54 0.75 34.71 -0.21 0.84 -0.02 1.31 13.29
允许限值 25 0.6 35.4 250 100 3.4 1171 190 170 0.90 300
东平湖周边耕地土壤[30] 13.10 0.130 - 80.5 - 0.040 - - 25.3 - -
2012年东平湖表层沉积物[28] 25.30 0.285 - 89.30 52.00 0.0550 - - 35.50 - 100.50
泰安市土壤地球化学背景值[26] 7.40 0.131 12.20 58.80 22.90 0.030 576 27.10 22.60 0.59 63.60
山东省湖泊表层沉积物背景值[39] 17.7 0.225 16.4 86.2 37.5 0.046 806 39.8 29.1 0.69 88.8
山东省沼泽表层沉积物背景值[39] 17.6 0.176 16.7 88.8 36.1 0.029 869 43.6 27.1 0.71 84.6
中国淡水湖泊表层沉积物背景值[40] 12.10 0.220 - 85.00 32.30 0.066 - 36.70 33.10 - 93.00
Table 2  研究区表层沉积物重金属描述性统计
容量等级 As Cd Co Cr Cu Hg Mn Ni Pb Tl Zn PI
高容量水平 0 11.4 5.7 8.6 5.7 0 14.3 5.7 5.7 8.6 8.6 8.6
中容量水平 14.3 62.9 82.9 91.4 74.3 97.1 54.3 94.3 94.3 45.7 88.6 82.8
低容量水平 40.0 25.7 11.4 0.0 20.0 2.9 28.6 0 0 42.9 2.9 8.6
警戒水平 34.3 0 0 0 0 0 2.9 0 0 2.9 0 0
过载水平 11.4 0 0 0 0 0 0 0 0 0 0 0
Pi范围 -0.34~
0.89
0.48~
1.14
0.51~
1.06
0.82~
1.05
0.46~
1.07
0.55~
1.00
0.27~
1.11
0.85~
1.02
0.90~
1.02
0.04~
1.17
0.37~
1.08
0.68~
1.04
Table 3  不同重金属环境容量等级样品占总样品的比例
Fig.2  重金属环境容量分级
Fig.3  重金属浓度累积频率(a)及环境容量指数(b)空间分布
注:图a和b中元素顺序均为: As、Cd、Co、Cr、Cu、Hg、Mn、Ni、Pb、Tl和Zn
环境容量 As Cd Co Cr Cu Hg Mn Ni Pb Tl Zn
静态总容量 39.60 1.06 52.20 430.20 173.48 7.58 1381.5 366.53 331.65 0.65 531.90
现存容量 最小值 -13.53~
-0.27
0.50 26.73 354.44 79.66 4.19 368.55 310.60 298.06 0.02 194.50
最大值 35.27 1.21 55.47 453.86 185.69 7.60 1539.74 373.15 337.84 0.76 573.68
平均值 17.87 0.85 41.82 401.32 139.23 7.45 1084.5 337.58 317.08 0.47 476.42
Table 4  重金属静态总容量和现存总容量
Fig.4  沉积物重金属静态年容量(a)和动态年容量(b)
[1] Andjelkovic A, Ristic R, Janic M, et al. Genesis of sediments and siltation of the accumulation 'duboki potok' of the barajevska river basin,Serbia[J]. Journal of Environmental Protection & Ecology, 2017, 18 (4):1735-1745.
[2] Yu L, Liu H, Wan F, et al. Geochemical records of the sediments and their significance in Dongping Lake Area,the lower reach of Yellow River,North China[J]. Journal of Groundwater Science and Engineering, 2021(2):140-151.
[3] 中国科学院南京地理与湖泊研究所. 中国湖泊调查报告[M]. 北京: 科学出版社, 2019.
[3] Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences. Report of lake survey in China[M]. Beijing: Science Press, 2019.
[4] Li Y Y, Gao B, Xu D Y, et al. Hydrodynamic impact on trace metals in sediments in the cascade reservoirs,North China[J]. Science of the Total Environment, 2020, 716:136914.
[5] Liu M X, Yang Y Y, Yun X Y, et al. Distribution and ecological assessment of heavy metals in surface sediments of the East Lake,China[J]. Ecotoxicology, 2014, 23(1):92-101.
[6] 杨陈, 王沛芳, 刘佳佳, 等. 太湖沉积物中重金属的垂向分布特征及迁移转化[J]. 农业环境科学学报, 2016, 35(3):548-557.
[6] Yang C, Wang P F, Liu J J, et al. Vertical distribution and migration of heavy metals in sediment cores of Taihu Lake[J]. Journal of Agro-Environment Science, 2016, 35(3):548-557.
[7] Superville P J, Prygiel E, Magnier A, et al. Daily variations of Zn and Pb concentrations in the Deûle River in relation to the resuspension of heavily polluted sediments[J]. Science of the Total Environment, 2014, 470:600-607.
[8] 阎琨, 庞国涛, 李伟, 等. 广西茅尾海入海河口表层沉积物重金属分布及风险评价[J]. 物探与化探, 2022, 46(4):1030-1036.
[8] Yan K, Pang G T, Li W, et al. Assessing the distribution and ecological risks of heavy metals in surface sediments of the Maowei Sea Estuary,Guangxi[J]. Geophysical and Geochemical Exploration, 2022, 46(4):1030-1036.
[9] 俞慎, 历红波. 沉积物再悬浮-重金属释放机制研究进展[J]. 生态环境学报, 2010, 19(7):1724-1731.
doi: 10.16258/j.cnki.1674-5906(2010)07-1724-08
[9] Yu S, Li H B. Perspectives on the release of heavy metals via sediment resuspension[J]. Ecology and Environmental Sciences, 2010, 19(7):1724-1731.
[10] Li K Q, Wang X L. Calculation methodology of marine environmental capacity for heavy metal:A case study in Jiaozhou Bay,China[J]. Chinese Science Bulletin, 2013, 58(2):282-287.
[11] 叶嗣宗. 土壤环境背景值在容量计算和环境质量评价中的应用[J]. 中国环境监测, 1993, 9(9):99-54.
[11] Ye S Z. Application of soil environmental background values in capacity calculation and environmental quality assessment[J]. Environmental Monitoring in China, 1993, 9(9):99-54.
[12] 付传城, 王文勇, 潘剑君, 等. 南京市溧水区土壤重金属污染不同插值方法的对比研究[J]. 土壤通报, 2014, 45(6):1325-1333.
[12] Fu C C, Wang W Y, Pan J J, et al. A comparative study on different soil heavy metal interpolation methods in Lishui district,Nanjing[J]. Chinese Journal of Soil Science, 2014, 45(6):1325-1333.
[13] Pan Y J, Ding L, Xie S Y, et al. Spatiotemporal simulation,early warning,and policy recommendations of the soil heavy metal environmental capacity of the agricultural land in a typical industrial city in China:Case of Zhongshan City[J]. Journal of Cleaner Production, 2021, 285:124849.
[14] 陶亚, 陈宇轩, 赵喜亮, 等. 基于EFDC模型的阿什河水环境容量季节性分析[J]. 环境工程, 2017, 35(7):65-69.
[14] Tao Y, Chen Y X, Zhao X L, et al. Analysis of seasonality difference on water environmental capacity of ashi river based on efdc[J]. Environmental Engineering, 2017, 35(7):65-69.
[15] 熊鸿斌, 张斯思, 匡武, 等. 基于MIKE 11模型的引江济淮工程涡河段动态水环境容量研究[J]. 自然资源学报, 2017, 32(8):1422-1432.
doi: 10.11849/zrzyxb.20160781
[15] Xiong H B, Zhang S S, Kuang W, et al. Environment capacity of the guohe river in the water transfer project from Yangtze River to Huaihe River based on a MIKE 11 model[J]. Journal of Natural Resources, 2017, 32(8):1422-1432.
[16] 谭馨, 项学敏, 高范, 等. 基于线性规划的大连湾海域环境容量分析[J]. 大连理工大学学报, 2023, 63(3):256-264.
[16] Tan X, Xiang X M, Gao F, et al. Marine environmental capacity analysis in Dalian Bay based on linear programming[J]. Journal of Dalian University of Technology, 2023, 63(3):256-264.
[17] Su Y, Yu Y Q. Dynamic early warning of regional atmospheric environmental carrying capacity[J]. Science of the Total Environment, 2020, 714:136684.
[18] 吴健芳, 王红梅, 李宇婷. 土壤环境容量理论、核算方法及其应用进展[J]. 生态经济, 2023, 39(6):182-188,227.
[18] Wu J F, Wang H M, Li Y T. Progress of the theory,calculation methods and application of soil environmental capacity[J]. Ecological Economy, 2023, 39(6):182-188,227.
[19] 于光金, 成杰民, 王忠训, 等. 山东省不同植被类型土壤重金属环境容量研究[J]. 土壤通报, 2009, 40(2):366-368.
[19] Yu G J, Cheng J M, Wang Z X, et al. Soil-environmental capacity in different vegetative types in Shandong Province[J]. Chinese Journal of Soil Science, 2009, 40(2):366-368.
[20] 麦尔哈巴·图尔贡, 麦麦提吐尔逊·艾则孜, 阿依努尔·麦提努日, 等. 吐鲁番盆地葡萄园土壤重金属环境容量评价与预测[J]. 地球与环境, 2020, 48(5):584-592.
[20] Marhaba Turhun, Mamattursun Eziz, Aynur Matnuri, et al. Evaluation and prediction of environmental capacities of heavy metals in vineyard soils in the Turpan Basin[J]. Earth and Environment, 2020, 48(5):584-592.
[21] 陈国兵. 淮北市土壤地质环境容量计算方法及评价结果研究[J]. 地下水, 2020, 42(3):111-112.
[21] Chen G B. Study on calculation method and evaluation results of soil geological environment capacity in Huaibei city[J]. Ground Water, 2020, 42(3):111-112.
[22] 吕悦风, 谢丽, 孙华, 等. 县域尺度耕地土壤重金属污染评价中的标准选择研究[J]. 中国环境科学, 2019, 39(11):4743-4751.
[22] Lyu Y F, Xie L, Sun H, et al. Criterion selection in assessment of soil heavy metal pollution in farmland on county scale[J]. China Environmental Science, 2019, 39(11):4743-4751.
[23] Liang F, Pan Y J, Peng H X, et al. Time-space simulation,health risk warning and policy recommendations of environmental capacity for heavy metals in the Pearl River Basin,China[J]. International Journal of Environmental Research and Public Health, 2022, 19(8):4694.
[24] 刘海, 魏伟, 宋阳, 等. 霍邱县城湖泊沉积物重金属环境容量评价与预测[J]. 环境科学, 2023, 44(11):6106-6115.
[24] Liu H, Wei W, Song Y, et al. Evaluation and prediction of environmental capacities of heavy metals in the surface sediments of lakes in Huoqiu County[J]. Environmental Science, 2023, 44(11):6106-6115.
[25] 张红武, 李琳琪, 彭昊, 等. 基于流域高质量发展目标的黄河相关问题研究[J]. 水利水电技术, 2021, 52(12):60-68.
[25] Zhang H W, Li L Q, Peng H, et al. Study on related problems of the Yellow River based on the goal of high-quality development of the basin[J]. Water Resources and Hydropower Engineering, 2021, 52(12):60-68.
[26] 庞绪贵, 代杰瑞, 陈磊, 等. 山东省17市土壤地球化学背景值[J]. 山东国土资源, 2019, 35(1):46-56.
[26] Pang X G, Dai J R, Chen L, et al. Soil geochemical background value of 17 cities in Shandong Province[J]. Shandong Land and Resources, 2019, 35(1):46-56.
[27] 生态环境部, 国家市场监督管理总局. GB 15618—2018土壤环境质量农用地土壤污染风险管控标准[S]. 北京: 中国标准出版社, 2018.
[27] Ministry of Ecology and Environment, State Administration for Market Supervision and Administration. GB 15618—2018 Soil environmental quality Risk control standard for soil contamination of agricultural land[S]. Beijing: Standards Press of China, 2018.
[28] 张菊, 何振芳, 董杰, 等. 东平湖表层沉积物重金属的空间分布及污染评价[J]. 生态环境学报, 2016, 25(10):1699-1706.
doi: 10.16258/j.cnki.1674-5906.2016.10.015
[28] Zhang J, He Z F, Dong J, et al. Spatial distribution and pollution assessment of heavy metals in the surface sediments of Dongping Lake[J]. Ecology and Environmental Sciences, 2016, 25(10):1699-1706.
[29] 成杭新, 李括, 李敏, 等. 中国城市土壤微量金属元素的管理目标值和整治行动值[J]. 地学前缘, 2015, 22(5):215-225.
doi: 10.13745/j.esf.2015.05.017
[29] Cheng H X, Li K, Li M, et al. Management target value(MTV)and rectification action value(RAV)of trace metals in urban soil in China[J]. Earth Science Frontiers, 2015, 22(5):215-225.
[30] 胡尊芳, 孙彦伟, 程龙, 等. 东平湖湖区农田土壤重金属污染评价[J]. 土壤与作物, 2017, 6(4):283-290.
[30] Hu Z F, Sun Y W, Cheng L, et al. Assessment of heavy metal pollution to farmland soil in Dongping Lake,Shangdong Province[J]. Soils and Crops, 2017, 6(4):283-290.
[31] 代杰瑞, 王增辉, 曾宪东, 等. 山东土壤地球化学参数[M]. 北京: 海洋出版社, 2021.
[31] Dai J R, Wang Z H, Zeng X D, et al. Soil geochemical parameters in Shandong Province[M]. Beijing: Ocean Press, 2021.
[32] 李敏, 成杭新, 李括. 中国淡水湖泊沉积物地球化学背景与环境质量基准建立的思考[J]. 地学前缘, 2018, 25(4):276-284.
doi: 10.13745/j.esf.yx.2017-5-9
[32] Li M, Cheng H X, Li K. Geochemical background of freshwater lake sediments:A constraint on the establishment of sediment quality guidelines in China[J]. Earth Science Frontiers, 2018, 25(4):276-284.
[33] 周伟立, 麻冰涓, 程柳, 等. 重金属在三门峡水库的赋存特征和风险评价[J]. 人民黄河, 2018, 40(4):83-87,91.
[33] Zhou W L, Ma B J, Cheng L, et al. Occurrence and risk assessment of heavy metals in Sanmenxia Reservoir[J]. Yellow River, 2018, 40(4):83-87,91.
[34] 程柳, 毛宇翔, 麻冰涓, 等. 小浪底水库沉积物中重金属污染及生态风险评价[J]. 环境化学, 2014, 33(8):1412-1413.
[34] Cheng L, Mao Y X, Ma B J, et al. Heavy metal pollution and ecological risk assessment in sediments of Xiaolangdi Reservoir[J]. Environmental Chemistry, 2014, 33(8):1412-1413.
[35] 刘翔, 郭建明, 樊海龙, 等. 刘家峡水库西南部水域表层沉积物重金属污染评价[J]. 沉积与特提斯地质, 2020, 40(4):1-10.
[35] Liu X, Guo J M, Fan H L, et al. Evaluation of heavy metal pollution in surface sediments of southwest Liujiaxia Reservoir,Gansu[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(4):1-10.
[36] 朱嵬, 李志刚, 李健, 等. 宁夏黄河流域湖泊湿地底泥重金属污染特征及生态风险评价[J]. 中国农学通报, 2013, 29(35):281-288.
[36] Zhu W, Li Z G, Li J, et al. Pollution characteristics and potential ecological risk assessment of heavy metals in the lake wetlands in the Yellow River valleys of Ningxia[J]. Chinese Agricultural Science Bulletin, 2013, 29(35):281-288.
[37] 刘良, 张祖陆. 南四湖表层沉积物重金属的空间分布、来源及污染评价[J]. 水生态学杂志, 2013, 34(6):7-15.
[37] Liu L, Zhang Z L. Spatial distribution,sources and pollution assesment of heavy metals in the surface sediments of Nansihu Lake[J]. Journal of Hydroecology, 2013, 34(6):7-15.
[38] 李宝, 张智慧, 王志奇, 等. 山东南四湖底泥典型重金属的形态分布、稳定度与风险评价[J]. 环境化学, 2022, 41(3):940-948.
[38] Li B, Zhang Z H, Wang Z Q, et al. Fraction distribution,stability and risk assessment of typical heavy metals in sediment of Nansi Lake,Shandong Province,China[J]. Environmental Chemistry, 2022, 41(3):940-948.
[39] 王茜, 刘永侠, 庄文, 等. 南四湖表层沉积物中铍、锑、铊的地球化学特征与环境风险[J]. 环境科学学报, 2018, 38(5):1968-1982.
[39] Wang Q, Liu Y X, Zhuang W, et al. Research on geochemical characteristics and environmental risk of Be,Sb and Tl in surface sediments of the Nansihu Lake[J]. Acta Scientiae Circumstantiae, 2018, 38(5):1968-1982.
[40] Yu L S, Wan F, Fan H Y, et al. Spatial distribution,source apportionment,and ecological risk assessment of soil heavy metals in jianghugongmi producing area,Shandong Province[J]. Huan Jing Ke Xue= Huanjing Kexue, 2022, 43(8):4199-4211.
[41] 迟清华, 马生明. 流域上游基岩与下游冲积平原土壤化学组成的对比[J]. 地质通报, 2008, 27(2):188-195.
[41] Chi Q H, Ma S M. Comparison between the chemical composition of bedrocks in the upper reaches and that of alluvial plain soils in the lower reaches of a drainage area[J]. Geological Bulletin of China, 2008, 27(2):188-195.
[1] 韩冰, 黄勇, 李欢, 安永龙. 北京市房山区土壤重金属元素分布、富集特征及来源解析[J]. 物探与化探, 2024, 48(3): 820-833.
[2] 史敬涛, 刘俊建, 张军超, 王江玉龙, 姜禹戈, 王末, 李横飞, 杨文号, 颜翔锦. 浅山区典型小流域土壤重金属影响因素及来源分析[J]. 物探与化探, 2024, 48(3): 834-846.
[3] 余飞, 王锐, 周皎, 张风雷, 蒋玉莲, 张云逸, 朱世林. 典型汞矿区周边耕地土壤重金属来源解析与农作物健康风险评价[J]. 物探与化探, 2024, 48(3): 847-857.
[4] 蒋羽雄, 文美兰, 潘启明, 蒋柏昌, 王忠伟. 广西荔浦市土壤—农作物中重金属迁移转化及生态效应[J]. 物探与化探, 2024, 48(3): 858-867.
[5] 肖高强, 赵娟, 陈子万, 宋旭锋, 朱能刚. 基于地质大数据技术对云南土壤重金属地质高背景区的划定[J]. 物探与化探, 2024, 48(1): 216-227.
[6] 蔡柯柯, 赵志强, 蒙丽, 王孝萌, 刘键, 罗仁凤. 重庆市秀山县北部大气干湿沉降重金属元素分布特征及来源分析[J]. 物探与化探, 2024, 48(1): 237-244.
[7] 杨艳, 刘彬, 夏飞强, 陈平峰, 张祥. 皖南典型区耕地土壤重金属富集特征、来源识别及健康风险评估[J]. 物探与化探, 2024, 48(1): 255-263.
[8] 范海印, 宋蕊蕊, 于林松, 滕永波, 万方, 张秀文, 李圣玉, 赵闯. 鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价[J]. 物探与化探, 2023, 47(5): 1326-1335.
[9] 杨婵, 吴娟娟, 车旭曦, 岳思羽, 刘智峰, 宋凤敏. 汉江上游水体沉积物污染状况分析与评价[J]. 物探与化探, 2023, 47(5): 1361-1370.
[10] 王惠艳, 彭敏, 马宏宏, 张富贵. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 2023, 47(4): 1109-1117.
[11] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[12] 王磊, 卓小雄, 吴天生, 凌胜华, 钟晓宇, 赵晓孟. 调查评价的土壤元素累积趋势预测——以广西南宁市西乡塘区为例[J]. 物探与化探, 2023, 47(1): 1-13.
[13] 宋运红, 杨凤超, 刘凯, 戴慧敏, 许江, 杨泽. 三江平原耕地土壤重金属元素分布特征及影响因素的多元统计分析[J]. 物探与化探, 2022, 46(5): 1064-1075.
[14] 徐雄, 孙艳亭, 肖方, 肖培平, 董应尚, 李敏. 菏泽市水系沉积物重金属特征及风险评估[J]. 物探与化探, 2022, 46(4): 1021-1029.
[15] 阎琨, 庞国涛, 李伟, 毛方松. 广西茅尾海入海河口表层沉积物重金属分布及风险评价[J]. 物探与化探, 2022, 46(4): 1030-1036.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com