Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (5): 1326-1335    DOI: 10.11720/wtyht.2023.1367
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价
范海印1,2(), 宋蕊蕊1,2, 于林松1,2, 滕永波1,2(), 万方1,2, 张秀文1,2, 李圣玉1,2, 赵闯1,2
1.山东省物化探勘查院,山东 济南 250013
2.地下资源环境高精度探测山东省工程研究中心,山东 济南 250013
Heavy metal pollution and health risk assessment of groundwater in a typical chemical industry park in northwestern Shandong, China
FAN Hai-Yin1,2(), SONG Rui-Rui1,2, YU Lin-Song1,2, TENG Yong-Bo1,2(), WAN Fang1,2, ZHANG Xiu-Wen1,2, LI Sheng-Yu1,2, ZHAO Chuang1,2
1. Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250013, China
2. Shandong Engineering Research Center for High Precision Detection of Underground Resources and Environment, Jinan 250013, China
全文: PDF(4861 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了解鲁西北地区某典型化工园区地下水重金属的污染特征,按照化工园区地下水环境状况调查评估要求,采集10件地下水样品,分析Fe、Cu、Zn、As、Cd和Pb等6项重金属元素浓度及空间分布特征,并对不同人群进行健康风险评价。结果表明:①该化工园区地下水重金属元素浓度均小于《地下水质量标准》(GB/T 14848—2017)中Ⅲ类水质标准,综合污染指数变化范围为0.37~0.68,监测点位重金属元素均为无污染。②重金属元素总体空间分布特征与化工园区内重点企业分布区域基本吻合,说明企业的生产活动等外在因素影响了地下水重金属的空间分布。③儿童的健康风险要低于成人,且皮肤接触途径的健康风险要低于饮用途径。非致癌风险在不同暴露途径下对不同人群均处于可接受水平,致癌物质As和Cd对成人存在轻微的致癌风险。当地主管部门应加强对企业生产活动的监管,对存在疑似污染的企业进行全面排查,才能有效地控制并逐步降低地下水污染对人体造成的健康风险。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范海印
宋蕊蕊
于林松
滕永波
万方
张秀文
李圣玉
赵闯
关键词 重金属地下水空间分布健康风险化工园区    
Abstract

This study aims to ascertain the heavy metal pollution of groundwater in a typical chemical industry park in northwestern Shandong. According to the investigation and evaluation requirements for groundwater environments in chemical industry parks, this study collected 10 groundwater samples to analyze the concentrations and spatial distributions of eight heavy metals, namely Fe, Cu, Zn, Al, Cd and Pb. Furthermore, it conducted the health risk assessment of groundwater for different populations. The results indicate that: (1) except Mn and Al, all heavy metals in the groundwater of the chemical industry park showed concentrations lower than the class III water quality standard stated in the Standard for Groundwater Quality (GB/T 14848—2017), with a comprehensive pollution index ranging from 0.37 to 0.78. The monitoring points for heavy metal elements are all pollution-free; (2) the overall spatial distributions of heavy metals are roughly consistent with the distribution areas of key enterprises in the chemical industry park. This consistency indicates that external factors such as the production activities of enterprises affect the spatial distributions of heavy metals in groundwater; (3) the health risks are lower for children than for adults and lower via skin contact than via drinking. The non-carcinogenic risks under different exposure routes are acceptable for different populations. Carcinogens As and Cd have slight carcinogenic risks for adults. Local authorities should strengthen the supervision of the production activities of enterprises and thoroughly inspect enterprises with suspected pollution. Only in this way can we effectively control and then gradually reduce the risks to human health caused by groundwater pollution.

Key wordsheavy metal    groundwater    spatial distribution    health risk    chemical industry park
收稿日期: 2022-07-18      修回日期: 2022-12-21      出版日期: 2023-10-20
ZTFLH:  X53  
基金资助:山东地矿局科技引领项目(202227)
通讯作者: 滕永波
作者简介: 范海印(1990-),男,山东鄄城人,工程师,主要从事地质矿产及地球化学相关工作。Email:741370828@qq.com
引用本文:   
范海印, 宋蕊蕊, 于林松, 滕永波, 万方, 张秀文, 李圣玉, 赵闯. 鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价[J]. 物探与化探, 2023, 47(5): 1326-1335.
FAN Hai-Yin, SONG Rui-Rui, YU Lin-Song, TENG Yong-Bo, WAN Fang, ZHANG Xiu-Wen, LI Sheng-Yu, ZHAO Chuang. Heavy metal pollution and health risk assessment of groundwater in a typical chemical industry park in northwestern Shandong, China. Geophysical and Geochemical Exploration, 2023, 47(5): 1326-1335.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1367      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I5/1326
Fig.1  研究区区域水文地质
Fig.2  研究区平面布置及采样点位分布
参数定义范围 含义
Pi≤1.0 P≤0.7 无污染
1.0<Pi≤2.0 0.7<P≤1.0 轻微污染
2.0<Pi≤3.0 1.0<P≤2.0 轻度污染
3.0<Pi≤5.0 2.0<P≤3.0 中度污染
Pi>5.0 P>3.0 重度污染
Table 1  参数取值含义
Fig.3  研究区污染物风险暴露概念模型
参数符号及单位 参数含义 成人参考值 儿童参考值 参数来源
C/(mg·L-1) 污染物浓度 Ci Ci 本次研究
ED/a 持续暴露时间 30 9 [32-3]
ET/(d·a-1) 暴露时间 360 360 [32-3]
EF/(d·a-1) 暴露频率 350 350 [32-3]
SA/cm2 接触的皮肤表面积 16000 9300 [32-3]
PC/(cm·h-1) 皮肤渗透系数 0.0001(Fe)、0.0006(Cu)、0.0006(Zn)、
0.0018(As)、0.001(Cd)、0.000004(Pb)
[34]
CF/(L·cm-1) 体积转换因子 0.001 0.001 [34]
IR/(L·d-1) 每日平均饮用量 1.70 1.14 [32-3]
BW/kg 平均体重 57.00 23.80 [32-3]
AT/d 平均暴露时间 25500 25500 [32-3]
Table 2  健康风险评价暴露参数值

重金属
致癌强度系数q/(mg·(kg·d)-1) 日均参考剂量RfD/(mg·(kg·d)-1)
参数来源
饮用途径 皮肤接触途径 饮用途径 皮肤接触途径
Cd 6.1 0.38 0.0005 0.0005 [35-36]
As 1.5 3.66 0.0003 0.0001 [35-36]
Fe 0.3 0.0045 [35-36]
Cu 0.04 0.012 [35-36]
Zn 0.3 0.01 [35-36]
Pb 0.0014 0.0014* [35-36]
Table 3  致癌强度系数(q)和日均参考剂量(RfD)
元素 最小值
/(mg·L-1)
最大值
/(mg·L-1)
平均值
/(mg·L-1)
背景值
/(mg·L-1)
标准差
/(mg·L-1)
变异系
数/%
偏度 峰度 超标率
/%
国家Ⅲ类
标准
Fe 0.003 0.294 0.133 0.049 0.107 70.9 -0.499 -1.362 0.00 0.3
Cu 0.005 0.756 0.277 0.003 0.268 96.8 0.639 -0.702 0.00 1.00
Zn 0.003 0.762 0.196 0.019 0.255 130.1 1.74 1.946 0.00 1.00
As 0.0005 0.0094 0.0038 0.00057 0.0028 73.7 1.36 0.961 0.00 0.01
Cd 0.00005 0.00245 0.0010 0.00004 0.00082 82.0 0.409 -1.105 0.00 0.005
Pb 0.0005 0.0098 0.0054 0.0009 0.0033 61.1 -0.399 -1.275 0.00 0.01
Table 4  地下水重金属浓度分析统计
Fig.4  单因子污染指数与综合污染指数评价地下水重金属
Fig.5  研究区地下水重金属浓度空间分布特征
Fig.6  两种途径下地下水重金属对儿童和成人的健康风险值箱式图
[1] 沈洪艳, 安冉, 师华定, 等. 湖南省某典型流域农用地土壤重金属污染及影响因素[J]. 环境科学究, 2021, 34(3):715-724.
[1] Shen H Y, An R, Shi H D, et al. Heavy metal pollution and influencing factors of agricultural land in a typical watershed in Hunan Province[J]. Environmental Science Research, 2021, 34 (3):715-724.
[2] 师环环, 潘羽杰, 曾敏, 等. 雷州半岛地下水重金属来源解析及健康风险评价[J]. 环境科学, 2021, 42(9):4246-4256.
[2] Shi H H, Pan Y J, Zeng M, et al. Source analysis and health risk assessment of heavy metals in groundwater of Leizhou Peninsula[J]. Environmental Science, 2021, 42 (9):4246-4256.
[3] You D, Zhou J, Wang J, et al. Analysis of relations of heavy metal accumulation with land utilization using the positive and negative association rule method[J]. Mathematical & Computer Modelling, 2011, 54(3/4):1005-1009.
[4] Rommel S H, Stinshoff P, Helmreich B. Sequential extraction of heavy metals from sorptive filter media and sediments trapped in stormwater quality improvement devices for road runoff[J]. Science of the Total Environment, 2021, 782:146875
doi: 10.1016/j.scitotenv.2021.146875
[5] 秦承刚, 王旭东, 徐海峰, 等. 鲁南化工高科技园区地下水污染调查与分析[J]. 山东化工, 2016, 45(12):184-187.
[5] Qin C G, Wang X D, Xu H F, et al. Groundwater pollution investigation and analysis of Lunan chemical high-tech industry zone[J] Shandong Chemical Industry, 2016, 45 (12):184-187
[6] Wang T, Yuan Z, Yao J. A combined approach to evaluate activity and structure of soil microbial community in long-term heavy metals contaminated soils[J]. Environmental Engineering Research, 2017, 23(1):62-69.
doi: 10.4491/eer.2017.063
[7] Diagomanolin V, Farhang M, Ghazi-khansari M, et al.Heavy metals(Ni,Cr,Cu) in the Karoon waterway river,Iran[J]. Toxicology Letters, 2004, 151(1):63-67.
pmid: 15177641
[8] Azevedo J S, Serafim A, Company R, et al. Biomarkers of exposure to metal contamination and lipid peroxidation in the benthic fish Cathorops spixii from two estuaries in South America,Brazil[J]. Ecotoxicology, 2009, 18(8):1001-1010.
doi: 10.1007/s10646-009-0370-x pmid: 19603268
[9] 谷阳光, 高富代. 我国省会城市土壤重金属含量分布与健康风险评价[J]. 环境化学, 2017, 36(1):62-71.
[9] Gu Y G, Gao F D. Spatial distribution and health risk assessment of heavy metals in provincial capital cities,China[J]. Environmental Chemistry, 2017, 36(1):62-71.
[10] 常亮. 重金属元素镉、铬、钴、铅、锰、铊在人体骨与血中含量与年龄变化的关系探究[D]. 南京: 南京大学, 2018:14-19.
[10] Chang L. Study on the relationship between age and the content of heavy metal elements such as cadmium,chromium,cobalt,lead,manganese and thallium in human bone and blood[D]. Nanjing: Nanjing University, 2018:14-19.
[11] 赵玉. 渭河干流浅层地下水与地表水中重金属Cd污染特征及风险评价[J]. 地球科学与环境学报, 2020, 42(2):267-277.
[11] Zhao Y. Characteristics and risk assessment of heavy meatal Cd pollution of shallow groundwater and surface water in main stream of Weihe River,China[J]. Journal of Earth Sciences and Environment, 2020, 42(2):267-277.
[12] 杨婷婷, 王璐, 尚宏鑫, 等. 大连地区海洋生物中重金属Pb和Cd对人体健康的潜在风险评价[J]. 水产养殖, 2018, 39(7):15-19.
[12] Yang T T, Wang L, Shang H X, et al. Potential risk assessment of heavy metals(Pb and Cd)to health form marine life in Dalian region[J]. Aquaculture, 2018, 39(7):15-19.
[13] Pokkate W, Srilert C, Wattasit S, et al. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani Province,Thailand[J]. Environmental Geochemistry & Health, 2014, 36(1):169-182.
[14] 倪彬, 王洪波, 李旭东, 等, 湖泊饮用水源地水环境健康风险评价[J]. 环境科学研究, 2010, 23(1):74-79.
[14] Ni B, Wang H B, Li X D, et al., Water environment health risk assessment in lake sources of drinking water[J]. Research of Environmental Sciences, 2010, 23(1):74-79.
[15] Chotpantarat S, Wongsasuluk P, Siriwong W, et al. Non-Carcinogenic hazard maps of heavy metal contamination in shallow groundwater for adult and aging populations at an agricultural area in Northeastern Thailand[J]. Human & Ecological Risk Assessment An International Journal, 2014, 20(3/4):689-703.
[16] Rattan R K, Datta S P, Chhonkar P K, et al. Long-termimpact of irrigation with sewage effluents on heavy metalcontent in soils,crops and groundwater:A case study[J]. Agriculture,Ecosystems and Environment, 2005, 109(3/4):310-322.
doi: 10.1016/j.agee.2005.02.025
[17] Zhang Y, Li F, Li J, et al. Spatial distribution,potential sources,and risk assessment of trace metals of Groundwater in the North China Plain[J]. Human & Ecological Risk Assessment An International Journal, 2015, 21(3/4):726-743.
[18] Cheng X, Qi W, Danek T, et al. Heavy metal contamination of surface water and groundwater in and Around Gejiu Tin Mine,Southwest China[J]. Inzynieria Mineralna, 2016, 17(1):93-98.
[19] 生态环境部. 化工园区地下水环境状况调查评估技术方案[S].
[19] Ministry of Ecology and Enviroment. Technical scheme for investigation and evaluation of groundwater environmental status in Chemical Park[S].
[20] HJ 168—2020环境监测分析方法标准制定技术导则[S].
[20] HJ 168—2020 Technical guidelines for the development of environmental monitoring analysis method standards[S].
[21] 于林松, 万方, 范海印, 等. 姜湖贡米产地土壤重金属空间分布、源解析及生态风险评价[J]. 环境科学, 2020, 43(8):4199-4211.
[21] Yu L S, Wan F, Fan H Y, et al. Spatial distribution,source apportionment,and ecological risk assessment of soil heavymetals in Jianghugongmi producing area,Shandong Province[J]. Environmental Science, 2020, 43(8):4199-4211.
[22] Brady J P, Ayoko G A, Martens W N, et al. Development of a hybrid pollution index for heavy metals in marine and estuarine sediments[J]. Environmental Monitoring and Assessment, 2015, 187 (5):306.
doi: 10.1007/s10661-015-4563-x pmid: 25925159
[23] Teng Q, Zhang D M, Deng F C, et al. Divergent patterns of heavy metal accumulation in paddy fields affect the dietary safety of rice:A case study in Maoming City,China[J]. Environmental Science and Pollution Research International, 2021, 28(38):53533-53543.
doi: 10.1007/s11356-021-14572-4
[24] 罗杰, 张嵚, 罗密密, 等. 某离子型稀土矿不同功能区土壤退化特征[J]. 中国稀土学报, 2022, 40(2):329-338.
[24] Luo J, Zhang Q, Luo M M, et al. Degradation characteristics of soil in different functional areas of an ion-type rare earth mine[J]. Journal of Rare Earths, 2022, 40(2):329-338.
[25] GB/T 14848—2017地下水质量标准[S].
[25] GB/T 14848—2017 Standard for groundwater quality[S].
[26] 李政红, 毕二平, 张胜, 等. 地下水污染健康风险评价方法[J]. 南水北调与水利科技, 2008, 6(6):47-51.
[26] Li Z H, Bi E P, Zhang S, et al. Method for health risk assessment of groundwater pollution[J]. South-to-North Water Transfers and Water Science & Technology, 2008, 6(6):47-51.
[27] 艾提业古丽·热西提, 麦麦提吐尔逊·艾则孜, 王维维, 等. 博斯腾湖流域地下水重金属污染的人体健康风险评估[J]. 生态毒理学报, 2019, 14(2):251-259.
[27] Atiyagul R, Mamattursun E, Wang W W, et al. The human health risk assessment of heavy metal pollution from groundwater in Bosten Lake Basin[J]. Asian Journal of Ecotoxicology, 2019, 14(2):251-259.
[28] Bian B, Zhou L J, Li L, et al. Risk assessment of heavy metals in air,water,vegetables,grains,and related soils irrigated with biogas slurry in Taihu Basin,China[J]. Environmental Science & Pollution Research, 2015, 22:7794-7807.
[29] US EPA. Regionnal screening levels[EB/OL]. 2010 [2022-03-13].Http://www.epa.gov.
[30] 刘蕊, 张辉, 勾昕, 等. 健康风险评估方法在中国重金属污染中的应用及暴露评估模型的研究进展[J]. 生态环境学报, 2014, 23(7):1239-1244.
[30] Liu R, Zhang H, Gou X, et al. Preliminary risk assessment oftrace metal pollution in surface water from Yangtze River in Nanjing section,China[J]. Journal of Ecology and Environment, 2014, 23(7):1239-1244.
[31] US EPA. Risk assessment guidance for superfund:Human health evaluation manual Part A, vol.1(EPA/540/1-89/002)[R]. Washington DC: Office of Emergency and Remedial Response, 1989.
[32] 段小丽, 赵秀阁. 中国人群暴露参数手册(成人卷)概要[M]. 北京: 中国环境科学出版社, 2014.
[32] Duan X L, Zhao X G. Highlights of the Chinese exposure factors handbook (adult)[M]. Beijing: China Environmental Science Press, 2014.
[33] 段小丽, 赵秀阁. 中国人群暴露参数手册(儿童卷)概要[M]. 北京: 中国环境科学出版社, 2016.
[33] Duan X L, Zhao X G. Highlights of the Chinese exposure factors handbook (children )[M]. Beijing: China Environmental Science Press, 2016.
[34] US EPA. Exposure factors handbook(EPA/600/P-95/002)[R]. Washington DC: Office of Emergency and Remedial Response, 1997:104-126.
[35] US EPA. Integrated risk information system[EB/OL].[2022-03-14].Http:www.epa.gov/iris.
[36] U.S.Department of energy the risk assessment information system[EB/OL].[2022-03-14].Http://rais.ornl.gov.
[37] 庞绪贵, 李秀章, 滕兆令, 等. 山东省黄河下游地区浅层地下水地球化学特征[J]. 岩矿测试, 2007, 26(4):298-304.
[37] Pang X G, Li X Z, Teng Z L, et al. Geochemical characteristics of the shallow groundwater in downstream area of the Yellow River in Shandong Province[J]. Rock or Mine Testing, 2007, 26(4):298-304.
[38] Stoeva N, Berova M, Zlatev Z. Effect of arsenic on some physiological parameters in bean plants[J]. Biologia Plantarum, 2005, 49(2):293-296.
doi: 10.1007/s10535-005-3296-z
[1] 杨婵, 吴娟娟, 车旭曦, 岳思羽, 刘智峰, 宋凤敏. 汉江上游水体沉积物污染状况分析与评价[J]. 物探与化探, 2023, 47(5): 1361-1370.
[2] 王惠艳, 彭敏, 马宏宏, 张富贵. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 2023, 47(4): 1109-1117.
[3] 李开富, 马欢, 张艳, 李威龙, 姜纪沂, 黄斌, 章龙管, 秦孟博. 基于时移电阻率法的平谷局部地区地下水时空特征研究[J]. 物探与化探, 2023, 47(4): 1002-1009.
[4] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[5] 张志, 徐洪苗, 钱家忠, 谢杰, 陈皓龙, 朱紫祥. 综合物探方法在矿泉水勘查中的应用——以泾县榔桥地区为例[J]. 物探与化探, 2023, 47(3): 690-699.
[6] 包凤琴, 成杭新, 永胜, 周立军, 杨宇亮. 包头南郊农田土壤环境质量特征及农作物健康风险评价[J]. 物探与化探, 2023, 47(3): 816-825.
[7] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[8] 王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
[9] 王磊, 卓小雄, 吴天生, 凌胜华, 钟晓宇, 赵晓孟. 调查评价的土壤元素累积趋势预测——以广西南宁市西乡塘区为例[J]. 物探与化探, 2023, 47(1): 1-13.
[10] 宋运红, 杨凤超, 刘凯, 戴慧敏, 许江, 杨泽. 三江平原耕地土壤重金属元素分布特征及影响因素的多元统计分析[J]. 物探与化探, 2022, 46(5): 1064-1075.
[11] 李秋燕, 张一鹤, 魏明辉, 贺鹏飞. 海伦市土壤主要微量元素空间分布特征[J]. 物探与化探, 2022, 46(5): 1114-1120.
[12] 徐雄, 孙艳亭, 肖方, 肖培平, 董应尚, 李敏. 菏泽市水系沉积物重金属特征及风险评估[J]. 物探与化探, 2022, 46(4): 1021-1029.
[13] 阎琨, 庞国涛, 李伟, 毛方松. 广西茅尾海入海河口表层沉积物重金属分布及风险评价[J]. 物探与化探, 2022, 46(4): 1030-1036.
[14] 居字龙, 秦志军, 万翔, 袁航, 张小波, 王登. 湖北红安县生态地质调查土壤重金属分布特征及生态风险评价[J]. 物探与化探, 2022, 46(4): 988-998.
[15] 范晨子, 袁继海, 刘成海, 郭威, 孙冬阳, 刘崴, 赵九江, 胡俊栋, 赵令浩. 云南省安宁地区土壤重金属等元素生态地球化学调查与评价[J]. 物探与化探, 2022, 46(3): 761-771.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com