Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (1): 237-244    DOI: 10.11720/wtyht.2024.2432
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
重庆市秀山县北部大气干湿沉降重金属元素分布特征及来源分析
蔡柯柯1(), 赵志强1, 蒙丽2,3, 王孝萌1, 刘键1, 罗仁凤1
1.重庆市地质矿产勘查开发局607地质队,重庆 400054
2.重庆地质矿产研究院,重庆 401120
3.重庆大学 环境与生态学院,重庆 400044
Distribution characteristics and source analysis of heavy metals from dry and wet atmospheric deposition in northern Xiushan County, Chongqing
CAI Ke-Ke1(), ZHAO Zhi-Qiang1, MENG Li2,3, WANG Xiao-Meng1, LIU Jian1, LUO Ren-Feng1
1. Chongqing Geological and Mineral Resource Exploration and Development Bureau 607 Geological Team, Chongqing 400054, China
2. Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
3. College of Environment and Ecology, Chongqing University, Chongqing 400044, China
全文: PDF(3776 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了解秀山北部大气干湿沉降物中重金属含量情况,使该区环境污染防治和农田土壤安全利用更具针对性,2019年4月~2020年4月,连续接收秀山县北部18个样点大气干湿沉降物,并分析测试其中Cd、Cr、Cu、Ni、Pb、Zn、Hg等7种重金属元素的含量;结合地形、地貌特点,分析秀山县北部大气干湿沉降中重金属的分布规律及来源,并采用地累积指数法评估大气干湿沉降中重金属对土壤的污染状况。结果表明:除Hg外,6种重金属元素存在明显的分区性,沉降高值区集中分布在川河盖两翼及东部,该区域大气干湿沉降物中6种重金属含量远高于全国及重庆市平均值;其余一般沉降区6种元素沉降通量均小于全国均值25%百分位。川河盖两翼较高的大气干湿沉降通量受东部花垣县铅锌矿开采及特殊地形地貌的综合影响,陡增的地形使得沉降中7种重金属通量增加了49倍,应加强该类型地貌区环境安全的监测与评估工作。经地累积指数法评估,川河盖两翼大气干湿沉降重金属中Cd为中度污染—严重至极度污染,Pb为轻度污染—中度污染,Zn为轻度污染—中度至严重污染。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡柯柯
赵志强
蒙丽
王孝萌
刘键
罗仁凤
关键词 大气干湿沉降重金属来源分析秀山    
Abstract

This study aims to determine the contents of heavy metals from dry and wet atmospheric deposition in northern Xiushan County for targeted environmental pollution prevention and control and safe farmland soil utilization. Based on the dry and wet atmospheric deposition samples continuously received from 18 sampling sites in northern Xiushan County from November 2019 to November 2020, this study tested the contents of seven heavy metal elements, including Cd, Cr, Cu, Ni, Pb, Zn, and Hg. Considering the topographic features, this study analyzed the distribution patterns and sources of heavy metals from dry and wet atmospheric deposition in northern Xiushan County. Moreover, this study assessed the soil pollution caused by heavy metals from dry and wet atmospheric deposition using the geoaccumulation index method. The results show that except Hg, the other six heavy metal elements exhibited significant zoning, with their high-value deposition areas distributed primarily in the flanks and eastern segment of Chuanhegai, where their contents were much higher than the national and Chongqing's averages. In contrast, their depositional fluxes in other general deposition areas were less than the national averages by 25%. The high dry and wet atmospheric deposition in the flanks of Chuanhegai was subjected to both the mining of the lead-zinc deposit in Huayuan County in the east and the special topography. The abrupt topography increased the fluxes of the seven heavy metals in the dry and wet atmospheric deposition by 49 times. Therefore, the monitoring and assessment of environmental safety in this type of landform area should be strengthened. According to the assessment results of the geoaccumulation index method, the flanks of Chuanhegai were moderately-severely to extremely polluted by Cd, slightly-moderately polluted by Pb, and slightly-moderately to severely polluted by Zn.

Key wordsdry and wet atmospheric deposition    heavy metal    source analysis    Xiushan
收稿日期: 2022-08-29      修回日期: 2023-07-03      出版日期: 2024-02-20
ZTFLH:  X142  
基金资助:重庆市规划和自然资源局项目“重庆1∶5万石堤幅、溶溪幅、龙池幅、花垣幅、秀山幅、石耶幅6幅土地质量地质调查”(渝规资[2020]188号)
作者简介: 蔡柯柯(1985-),女,2011年毕业于成都理工大学,主要研究方向为地质矿产、物化遥地质。Email:345789102@qq.com
引用本文:   
蔡柯柯, 赵志强, 蒙丽, 王孝萌, 刘键, 罗仁凤. 重庆市秀山县北部大气干湿沉降重金属元素分布特征及来源分析[J]. 物探与化探, 2024, 48(1): 237-244.
CAI Ke-Ke, ZHAO Zhi-Qiang, MENG Li, WANG Xiao-Meng, LIU Jian, LUO Ren-Feng. Distribution characteristics and source analysis of heavy metals from dry and wet atmospheric deposition in northern Xiushan County, Chongqing. Geophysical and Geochemical Exploration, 2024, 48(1): 237-244.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.2432      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I1/237
Fig.1  研究区范围及大气沉降采样点位分布
Fig.2  各样点重金属元素沉降通量点位符号
注:蓝色点表示低于25%百分位;绿色点表示位于25%~50%百分位;橙色点表示位于50%~75%百分位;玫色点表示位于75%~90%百分位;红色点表示高于90%百分位
分区 样品编号 Cd Cr Cu Ni Pb Zn Hg
一般区 JC01 0.077 0.935 1.150 0.550 2.014 4.765 0.155
JC02 0.059 0.948 0.909 1.597 1.506 3.664 0.040
JC03 0.042 1.067 1.091 1.179 1.528 4.723 0.129
JC04 0.113 2.505 1.046 0.628 1.762 5.096 0.048
JC05 0.058 0.679 0.617 0.441 1.459 3.689 0.042
JC06 0.053 0.656 0.649 0.492 1.532 3.131 0.065
JC07 0.120 0.766 1.053 0.433 2.432 5.658 0.059
JC08 0.071 1.371 1.141 0.788 5.550 5.516 0.173
JC09 0.061 1.353 1.024 1.653 1.695 3.753 0.083
JC13 0.213 2.043 3.109 1.558 4.678 13.765 0.063
JC14 0.138 0.784 1.209 0.459 2.853 6.769 0.162
JC15 0.082 3.491 1.478 1.041 3.199 6.476 0.079
JC18 0.115 0.837 1.065 0.341 3.393 4.935 0.102
JC20 0.162 0.643 0.655 0.352 2.647 8.851 0.176
平均值 0.097 1.291 1.157 0.822 2.589 5.771 0.098
川河盖两翼沉
降量高值区
JC10 2.500 40.500 17.200 14.500 65.400 108.000 0.138
JC11 76.100 388.800 298.400 237.900 1395.600 3482.200 0.146
JC16 0.737 9.689 8.284 5.076 21.439 66.948 0.101
JC17 1.250 3.530 3.542 1.621 15.753 93.506 0.078
平均值 20.981 117.633 85.052 64.271 376.904 960.891 0.097
全区 最大值 76.100 388.8 298.400 237.900 1395.6 3482.2 0.176
最小值 0.042 0.643 0.617 0.341 1.459 3.131 0.024
平均值 4.554 25.585 19.087 15.032 85.246 212.859 0.102
标准差 17.31 88.54 67.85 54.14 318.15 793.58 0.05
变异系数 3.81 3.46 3.55 3.60 3.73 3.73 0.45
全国[19] 平均值 0.71 18.21 15.55 7.57 36.72 147.85 0.07
重庆主城区降水[20] 平均值 0.44 2.9 13 2.22 30.25 76.26
Table 1  各样点大气干湿沉降中重金属元素沉降通量
样品编号 Cd Cr Cu Hg Ni Pb Zn 样品编号 Cd Cr Cu Hg Ni Pb Zn
JC01 0.20 68.0 27.8 0.08 34.4 32.6 84.1 JC13 0.40 81.2 32.4 0.24 33.6 33.9 99.1
JC02 0.21 71.1 28.5 0.06 34.4 32.1 89.5 JC14 0.34 72.9 28.3 0.57 34.5 42.8 95.1
JC03 0.19 68.6 25.3 0.07 33.0 29.8 86.4 JC15 0.36 86.7 26.0 0.21 33.5 40.7 95.8
JC04 0.16 59.2 19.0 0.07 25.8 26.3 69.5 JC18 0.43 77.9 29.2 0.55 32.9 39.9 102.6
JC05 0.33 82.3 29.5 0.17 34.1 46.9 88.6 JC20 0.39 77.6 32.6 0.17 39.0 44.0 104.0
JC06 0.46 69.5 27.0 0.30 30.2 47.6 90.2 JC10 0.28 75.2 28.2 0.09 34.2 33.7 85.9
JC07 0.94 98.1 50.2 1.46 49.9 29.1 122.2 JC11 0.32 74.0 47.7 0.07 34.5 35.7 87.9
JC08 0.26 76.1 28.6 0.35 35.5 31.1 84.3 JC16 0.33 74.5 46.7 0.07 39.3 34.9 89.8
JC09 0.39 83.0 26.8 0.23 32.9 46.0 94.9 JC17 0.53 71.4 32.1 0.22 34.4 48.8 94.2
Table 2  大气干湿沉降样点周围土壤中重金属元素含量
样品编号 占比/%
Cd Cr Cu Ni Pb Zn Hg
JC10 1.01 16.30 6.93 5.84 26.35 43.51 0.06
JC11 1.29 6.61 5.08 4.05 23.74 59.23 <0.01
JC16 0.66 8.63 7.38 4.52 19.09 59.63 0.09
JC17 1.05 2.96 2.97 1.36 13.21 78.39 0.07
川河盖顶土壤 0.26 30.73 9.91 12.77 12.37 33.90 0.06
Table 3  JC10、JC11、JC16、JC17与川河盖顶部土壤样品中重金属占比对比
Fig 3  大气干湿沉降观测点分布剖面示意
项目 地累积指数
Cd Cr Cu Hg Ni Pb Zn
JC10 3.6 -0.2 -0.1 0.7 -0.6 1.5 0.9
JC11 4.6 -0.8 0.2 -3.1 -0.4 2.0 2.0
JC16 2.5 -1.6 -0.4 1.0 -1.4 0.6 0.9
JC17 4.2 -2.1 -0.7 1.5 -2.1 1.1 2.3
Table 4  川河盖两翼大气沉降重金属地累积指数
Fig 4  JC11观测点及周围1 km范围内表层土壤及农作物样点分布
[1] 陈岳龙, 杨忠芳. 环境地球化学[M]. 北京: 地质出版社, 2017:85-91.
[1] Chen Y L, Yang Z F. Enviromental geochemistry[M]. Beijing: Geology Press, 2017:85-86.
[2] 陈满怀, 朱永官, 董元华, 等. 环境土壤学[M]. 北京: 科学出版社, 2018:9-10.
[2] Chen M H, Zhu Y G, Dong Y H, et al. Enviromental soil science[M]. Beijing: Science Press, 2018:9-10.
[3] 张乃明. 大气沉降对土壤重金属累积的影响[J]. 土壤与环境, 2001, 10(2):91-93.
[3] Zhang N M. Effects of air settlement on heavy metal accumulation in soil[J]. Soil and Environmental Sciences, 2001, 10(2):91-93.
[4] Goforth M R, Christoforou C S. Particle size distribution and atmospheric metals measurements in a rural area in the South Eastern USA[J]. Science of the Total Environment, 2006, 356(1):217-227.
doi: 10.1016/j.scitotenv.2005.03.017
[5] Nriagu J O. Changing metal cycles and human health[M]. Berlin Heidelberg: Springer, 1984:114-142.
[6] 熊秋林, 肖红伟, 程朋根, 等. 北京表层土壤重金属污染分布及大气沉降贡献[J]. 生态环境学报, 2021, 30(4):816-824.
doi: 10.16258/j.cnki.1674-5906.2021.04.018
[6] Xiong Q L, Xiao H W, Cheng P G, et al. A pollution distribution of topsoil heavy metals in Beijing and its atmospheric deposition contribution[J]. Ecology and Environmental Sciences, 2021, 30(4):816-824.
[7] 邹天森, 康文婷, 张金良, 等. 我国主要城市大气重金属的污染水平及分布特征[J]. 环境科学研究, 2015, 28(7):1053-1061.
[7] Zou T S, Kang W T, Zhang J L, et al. Concentrations and distribution characteristic of atmospheric heavy metals in urban areas of China[J]. Research of Environmental Sciences, 2015, 28(7):1053-1061.
[8] 戴青云, 贺前锋, 刘代欢, 等. 大气沉降重金属污染特征及生态风险研究进展[J]. 环境科学与技术, 2018, 41(3):56-64.
[8] Dai Q Y, He Q F, Liu D H, et al. Progress in research on heavy metals in atmospheric deposition:Pollution characteristics and ecological risk assessment[J]. Environmental Science & Technology, 2018, 41(3):56-64.
[9] Mijic Z, Stojic A, Perisic M, et al. Seasonal variability and source apportionment of metals in the atmospheric deposi-tion in Belgrade[J]. Atmospheric Environment, 2010, 44(30):3630-3637.
doi: 10.1016/j.atmosenv.2010.06.045
[10] 赖木收, 杨忠芳, 王洪翠, 等. 太原盆地农田区大气降尘对土壤重金属元素累积的影响及其来源探讨[J]. 地质通报, 2008, 27(2):240-245.
[10] Lai M S, Yang Z F, Wang H C, et al. Effects of atmospheric fallouts on heavy metal elements accumulation in soils in farmland areas in the Taiyuan basin,Shanxi,China and sources of fallouts[J]. Geological Bulletin of China, 2008, 27(2):240-245.
[11] 丛源, 陈岳龙, 杨忠芳, 等. 北京平原区元素的大气干湿沉降通量[J]. 地质通报, 2008, 27(2):257-264.
[11] Cong Y, Chen Y L, Yang Z F, et al. Dry and wet atmospheric deposition fluxes of elements in the plain area of Beijing municipality,China[J]. Geological Bulletin of China, 2008, 27(2):257-264.
[12] 汤洁, 韩维峥, 李娜, 等. 哈尔滨市城区大气重金属沉降特征和来源研究[J]. 光谱学与光谱分析, 2011, 31(11):3087-3091.
pmid: 22242523
[12] Tang J, Han W Z, Li N, et al. Multivariate analysis of heavy metal element concentrations in atmospheric deposition in Harbin City,northeast China[J]. Spectroscopy and Spectral Analysis, 2011, 31(11):3087-3091.
pmid: 22242523
[13] 李山泉, 杨金玲, 阮心玲, 等. 南京市大气沉降中重金属特征及对土壤环境的影响[J]. 中国环境科学, 2014, 34(1):22-29.
[13] Li S Q, Yang J L, Ruan X L, et al. Atmospheric deposition of heavy metals and their impacts on soil environmentin in typical urban areas of Nanjing[J]. China Environmental Science, 2014, 34(1):22-29.
[14] 李萍, 薛粟尹, 王胜利, 等. 兰州市大气降尘重金属污染评价及健康风险评价[J]. 环境科学, 2014, 35(3):1021-1028.
[14] Li P, Xue L Y, Wang S L, et al. pollution evaluation and health risk assessment of heavy metal from atmospheric deposition in Lanzhou[J]. Enviromental Science, 2014, 35(3):1021-1028.
[15] 杨磊, 熊黑刚. 新疆准东煤田土壤重金属来源分析及风险评价[J]. 农业工程学报, 2018, 34(15):273-281.
[15] Yang L, Xiong H G. Soil heavy metal sources analysis and risk evaluation of Zhundong coal mine in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15):273-281.
[16] 张国忠, 黄威, 潘月鹏, 等. 河北典型农田大气重金属干沉降通量及来源解析[J]. 中国生态农业学报, 2019, 27(8):1245-1254.
[16] Zhang G Z, Huang W, Pan Y P, et al. Dry deposition flux of atmospheric heavy metals and its source apportionment in a typical farmland of Hebei Province[J]. Chinese Journal of Eco-Agriculture, 2019, 27(8):1245-1254.
[17] 江华亮, 王宗爽, 武雪芳, 等. 我国大气PM2.5中砷的污染特征、来源及控制[J]. 环境工程技术学报, 2015, 5(6):464-470.
[17] Jiang H L, Wang Z S, Wu X F, et al. Pollution characteristics,sources and contral of arsenic in PM2.5 in China[J]. Journal of Environmental Engineering Technology, 2015, 5(6):464-470.
[18] 王增辉. 鲁西南平原区大气干湿沉降元素输入通量及来源浅析:以巨野县为例[J]. 物探与化探, 2020, 44(4):839-846.
[18] Wang Z H. An analysis of the input flux and source of elements in dry and wet atmospheric deposition of southwest plain of Shandong:A case study of Juye County[J]. Geophysical and Geochemical Exploration, 2020, 44(4):839-846.
[19] DZ/T 0295—2016土地质量地球化学评价规范[S].
[19] DZ/T 0295—2016 Determination of land quality geochemical evaluation[S].
[20] 王梦梦, 原梦云, 苏德纯. 我国大气重金属干湿沉降特征及时空变化规律[J]. 中国环境科学, 2017, 37(11):4085-4096.
[20] Wang M M, Yuan M Y, Su D C. Characteristics and spatial temporal variation of heavy metals in atmospheric dry and wet deposition of China[J]. China Environmental Science, 2017, 37(11):4085-4096.
[21] 彭玉龙, 王永敏, 覃蔡清, 等. 重庆主城区降水中重金属的分布特征及其沉降量[J]. 环境科学, 2014, 35(7):2490-2496.
[21] Peng Y L, Wang Y M, Qin C Q, et al. Concentrations and deposition fluxes of heavy metals in precipition in core urban areas,Chongqing[J]. Environmental Science, 2014, 35(7):2490-2496.
[22] 张夏, 刘斌, 肖柏林, 等. 重庆主城大气降尘中重金属污染特征及评价[J]. 环境科学, 2020, 41(12):5288-5294.
[22] Zhang X, Liu B, Xiao B L, et al. Pollution characteristics and assessment of heavy metals in atmospheric deposition in core urban areas,Chongqing[J]. Enviromental Science, 2020, 41(12):5288-5294.
[23] 冯新斌, 陈玖斌, 付学吾, 等. 汞的环境地球化学研究进展[J]. 矿物岩石地球化学通报, 2013, 32(5):503-530.
[23] Feng X B, Chen J B, Fu X W et al. Progresses on environmental geochemistry of mercury[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2013, 32(5):503-530.
[24] 张龙, 林先辉, 刘俏, 等. 秀山汞矿开采对当地土水环境的影响[J]. 西南师范大学学报:自然科学版, 2011, 36(6):105-109.
[24] Zhang L, Lin X H, Liu Q, et al. Effects of mercury mine exploitation on local soil and water environment in Xiushan[J]. Journal of Southwest China Normal University:Natural Science Edition, 2011, 36(6):105-109.
[25] 王丽丽, 金囝囡, 武志宏, 等. 不同类型施工降尘中重金属污染特征及健康风险评价[J]. 中国环境科学, 2021, 41(3):1055-1065.
[25] Wang L L, Jin J N, Wu Z H, et al. Heavy metal pollution characteristics and associated healthrisk assessment in different types of construction dust[J]. China Environmental Science, 2021, 41(3):1055-1065.
[26] 李霞, 贾健. 复杂地形多尺度气流对城市大气污染影响的研究进展[J]. 沙漠与绿洲气象, 2016, 10(6):1-10.
[26] Li X, Jia J. Research of the influences of the air flows on multiple scales on the transport and diffusion mechanisms of urban air pollution over the complex terrains[J]. Desert and Oasis Meteorology, 2016, 10(6):1-10.
[27] 赵西强, 王增辉, 王存龙, 等. 济南市近地表大气降尘元素地球化学特征及污染评价[J]. 物探与化探, 2016, 40(1):154-159.
[27] Zhao X Q, Wang Z H, Wang C L, et al. Geochemical characteristics and pollution assessment of near-surface atmospheric dust in Jinan[J]. Geophysical and Geochemical Exploration, 2016, 40(1):154-159.
[28] 刘志坚, 张绣. 银川市大气降尘重金属污染状况评价[J]. 物探与化探, 2017, 41(2):316-321.
[28] Liu Z J, Zhang X. Contamination status assessment of heavy metals from atmospheric dust falls in Yinchuan[J]. Geophysical and Geochemical Exploration, 2017, 41(2):316-321.
[29] 程珂, 杨新萍, 赵方杰. 大气沉降及土壤扬尘对天津城郊蔬菜重金属含量的影响[J]. 农业环境科学学报, 2015, 34(10):1835-1845.
[29] Cheng K, Yang X P, Zhao F J. Effects of atmospheric and dust depostion on content of heavy metals in vegetables in suburbs of Tianjin[J]. Journal of Agro-Enviroment Science, 2015, 34(10):1835-1845.
[30] 章明奎, 刘兆云, 周翠. 铅锌矿区附近大气沉降对蔬菜中重金属累积的影响[J]. 浙江大学学报:农业与生命科学版, 2010, 36(2):221-229.
[30] Zhang M K, Liu Z Y, Zhou C. Effect of atmospheric deposition on heavy metal accumulation in vegetable crop near a lead-zinc smelt mine[J]. Journal of Zhejiang University:Agric. & Life Sci., 2010, 36(2):221-229.
[1] 肖高强, 赵娟, 陈子万, 宋旭锋, 朱能刚. 基于地质大数据技术对云南土壤重金属地质高背景区的划定[J]. 物探与化探, 2024, 48(1): 216-227.
[2] 杨艳, 刘彬, 夏飞强, 陈平峰, 张祥. 皖南典型区耕地土壤重金属富集特征、来源识别及健康风险评估[J]. 物探与化探, 2024, 48(1): 255-263.
[3] 徐磊, 李俊, 瞿镪, 文方平, 赵萌生, 程琰勋, 徐杰, 王浩宇. 滇中中高山丘陵区大气干湿沉降元素地球化学特征及来源解析[J]. 物探与化探, 2023, 47(6): 1602-1610.
[4] 范海印, 宋蕊蕊, 于林松, 滕永波, 万方, 张秀文, 李圣玉, 赵闯. 鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价[J]. 物探与化探, 2023, 47(5): 1326-1335.
[5] 杨婵, 吴娟娟, 车旭曦, 岳思羽, 刘智峰, 宋凤敏. 汉江上游水体沉积物污染状况分析与评价[J]. 物探与化探, 2023, 47(5): 1361-1370.
[6] 王惠艳, 彭敏, 马宏宏, 张富贵. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 2023, 47(4): 1109-1117.
[7] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[8] 王磊, 卓小雄, 吴天生, 凌胜华, 钟晓宇, 赵晓孟. 调查评价的土壤元素累积趋势预测——以广西南宁市西乡塘区为例[J]. 物探与化探, 2023, 47(1): 1-13.
[9] 宋运红, 杨凤超, 刘凯, 戴慧敏, 许江, 杨泽. 三江平原耕地土壤重金属元素分布特征及影响因素的多元统计分析[J]. 物探与化探, 2022, 46(5): 1064-1075.
[10] 居字龙, 秦志军, 万翔, 袁航, 张小波, 王登. 湖北红安县生态地质调查土壤重金属分布特征及生态风险评价[J]. 物探与化探, 2022, 46(4): 988-998.
[11] 徐雄, 孙艳亭, 肖方, 肖培平, 董应尚, 李敏. 菏泽市水系沉积物重金属特征及风险评估[J]. 物探与化探, 2022, 46(4): 1021-1029.
[12] 阎琨, 庞国涛, 李伟, 毛方松. 广西茅尾海入海河口表层沉积物重金属分布及风险评价[J]. 物探与化探, 2022, 46(4): 1030-1036.
[13] 范晨子, 袁继海, 刘成海, 郭威, 孙冬阳, 刘崴, 赵九江, 胡俊栋, 赵令浩. 云南省安宁地区土壤重金属等元素生态地球化学调查与评价[J]. 物探与化探, 2022, 46(3): 761-771.
[14] 李生清. 海河流域沉积物重金属形态分布特征及生态风险评估[J]. 物探与化探, 2022, 46(3): 781-786.
[15] 张沁瑞, 李欢, 邓宇飞, 黄勇, 张博, 许一波. 北京东南郊土壤重金属元素分布及其在表层土壤中的富集特征[J]. 物探与化探, 2022, 46(2): 490-501.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com