Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1064-1075    DOI: 10.11720/wtyht.2022.0048
  东北黑土地地球化学调查专栏 本期目录 | 过刊浏览 | 高级检索 |
三江平原耕地土壤重金属元素分布特征及影响因素的多元统计分析
宋运红1,2,3(), 杨凤超1(), 刘凯1,2,3, 戴慧敏1,2,3, 许江1,2,3, 杨泽1,2,3
1.中国地质调查局 沈阳地质调查中心,辽宁 沈阳 110034
2.自然资源部 黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
3.辽宁省黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
A multivariate statistical analysis of the distribution and influencing factors of heavy metal elements in the cultivated land of the Sanjiang Plain
SONG Yun-Hong1,2,3(), YANG Feng-Chao1(), LIU Kai1,2,3, DAI Hui-Min1,2,3, XU Jiang1,2,3, YANG Ze1,2,3
1. Shenyang Center of China Geological Survey, Shenyang 110034, China
2. Key Laboratory for Evolution and Ecological Effect in Black Land, Ministry of Natural Resources, Shenyang 110034, China
3. Key Laboratory for Evolution and Ecological Effect in Black Land of Liaoning Province, Shenyang 110034, China
全文: PDF(12878 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地统计学和多元数据分析是讨论土壤中重金属元素来源的有效方法。对比不同地质背景区表层和深层土壤中重金属元素的含量和分布情况,可以为研究土壤中重金属元素的来源提供依据。三江平原是我国沼泽湿地分布相对集中的地区之一,属于温带湿润、半湿润大陆性季风气候,是我国重要的粮食生产基地,以农业生产为主。本次以三江平原为典型地区,从区域尺度上研究影响耕地土壤中的重金属元素分布的主要因素,分别对表层和深层土壤进行取样,计算As、Cr、Cu、Hg、Ni、Cd、Pb和Zn共8种重金属元素的最小值、最大值、中值、平均值、变异系数及富集系数。结果表明,三江平原土壤环境质量优越,表层土壤中重金属元素(除Cd外)As、Cr、Cu、Hg、Ni、Pb和Zn含量均略低于深层土壤;元素富集系数均小于2,仅有个别点位的表层Cd、Hg、As富集系数存在较大的值;通过地统计学和Pearson相关性分析,在5种成土母质区域,确定了表层和深层土壤中重金属元素的主要影响因子,综合分析表明, Cr、Cu、Ni和Zn的主要物质来源于成土母质,Cd、Hg、As在部分地区可能受到人类活动的叠加影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋运红
杨凤超
刘凯
戴慧敏
许江
杨泽
关键词 重金属元素表层土壤深层土壤地统计学和多元数据分析三江平原    
Abstract

Geostatistical and multivariate analyses are effective methods to determine the source of heavy metal elements in the soil. The comparison of the contents and distribution of heavy metal elements in the topsoil and subsoil in different geological setting areas can provide a basis for studying the sources of heavy metal elements in the soil. As one of the areas with concentrated marsh wetlands in China, the Sanjiang Plain has a temperate humid and subhumid continental monsoon climate, is an important grain production base, and has a low degree of industrial activities. This study investigated the main factors affecting the distribution of heavy metal elements in the soil of cultivated land of the Sanjiang Plain on a regional scale. Samples were collected from the topsoil and subsoil of the Sanjiang Plain. The minimum, maximum, median, and average contents, coefficient of variation, and concentration coefficient of eight heavy metal elements (i.e., As, Cr, Cu, Hg, Ni, Cd, Pb, and Zn) in the samples were calculated. The results are as follows. The Sanjiang Plain has superior soil environmental quality. The topsoil samples had slightly lower contents of heavy metal elements except for Cd (e.g., As, Cr, Cu, Hg, Ni, Pb, and Zn) than the subsoil samples. All these elements in the topsoil samples had concentration coefficients less than 2, except for those in the topsoil samples collected at certain points, which had high concentration coefficients of Cd, Hg, and As elements. The main factors influencing heavy metal elements in the topsoil and subsoil in five soil parent material regions were determined through geostatistical and Pearson correlation analyses. The comprehensive analysis results show that elements Cr, Cu, Ni, and Zn mainly originate from the soil parent materials, and Cd, Hg, and As may also be affected by human activities in some areas.

Key wordsheavy metal element    topsoil    subsoil    geostatistical and multivariate analyses    Sanjiang Plain
收稿日期: 2022-01-27      修回日期: 2022-06-07      出版日期: 2022-10-20
ZTFLH:  X142  
  P595  
基金资助:中国地质调查局项目“松辽平原黑土地生态地质调查”(DD20221779);“兴凯湖平原及松辽平原西部土地质量地球化学调查”(DD20190520)
通讯作者: 杨凤超
作者简介: 宋运红(1983-),女,2009年毕业于吉林大学,硕士,高级工程师,地球化学专业,主要从事黑土地形成与演化研究工作。Email:yunhong408@163.com
引用本文:   
宋运红, 杨凤超, 刘凯, 戴慧敏, 许江, 杨泽. 三江平原耕地土壤重金属元素分布特征及影响因素的多元统计分析[J]. 物探与化探, 2022, 46(5): 1064-1075.
SONG Yun-Hong, YANG Feng-Chao, LIU Kai, DAI Hui-Min, XU Jiang, YANG Ze. A multivariate statistical analysis of the distribution and influencing factors of heavy metal elements in the cultivated land of the Sanjiang Plain. Geophysical and Geochemical Exploration, 2022, 46(5): 1064-1075.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.0048      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1064
Fig.1  三江平原土壤采样点分布
参数 As Cd Cr Cu Hg Ni Pb Zn Sc
全部表层土壤,N=9873
平均值/10-6 8.85 0.083 65.09 21.76 0.034 25.69 25.62 63.52 11.75
中位数/10-6 8.40 0.075 65.30 21.90 0.031 24.90 25.5 62 11.9
变异系数/% 37.26 50.83 18.78 22.16 54.73 22.73 10.70 20.87 15.51
数据范围/10-6 1.80~116.8 0.009~1.740 16.5~281 4~74 0.013~1.25 5.8~147 2.3~68.3 24.4~225.1 2.3~21.9
(平均值±标准离差)/10-6 8.41±1.30 0.076±1.39 64.27±1.18 21.38±1.24 0.032±1.282 25.06±1.22 25.53±1.10 62.09±1.21 11.72±1.16
黑龙江省A层背景值[24]/10-6 7.3 0.086 58.6 20 0.037 22.8 24.2 70.7 10.79
全部深层土壤,N=2697
平均值/10-6 11.16 0.075 71.40 21.98 0.036 28.42 25.97 71.33 12.17
中位数/10-6 10.80 0.072 75.30 23.6 0.035 29.50 26.3 73.6 13.1
变异系数/% 51.07 36.60 29.75 30.27 34.43 38.45 12.84 20.67 24.11
数据范围/10-6 1.82~225 0.013~0.36 9.6~371.6 2.5~98.25 0.006~0.274 3.4~294.4 10.75~49.6 13.8~142.5 1.6~24.6
(平均值±标准离差)/10-6 10.50±1.34 0.071±1.40 73.11±1.19 21.78±1.32 0.034±1.34 27.48±1.31 25.82±1.13 72.44±1.19 12.42±1.22
黑龙江省C层背景值[24]/10-6 11.4 0.078 59.5 21 0.040 24.3 24.4 69.9
第四系表层,N=8383
平均值/10-6 8.21 0.079 65.50 21.88 0.032 25.43 25.18 60.47 11.65
中位数/10-6 8.00 0.072 65.70 22.40 0.031 24.80 25.10 58.00 11.80
变异系数/% 27.55 44.36 18.15 21.39 47.43 19.61 9.16 20.45 15.93
数据范围/10-6 1.80~43.45 0.009~1.167 16.5~121.6 4~49.4 0.013~0.986 8.08~47.9 9.2~61.75 27.4~212.1 2.9~19.1
(平均值±标准离差)/10-6 7.96±1.26 0.074±1.42 64.86±1.19 21.52±1.24 0.031±1.253 25.00±1.21 25.12±1.08 59.16±1.21 11.61±1.16
变质岩表层,N=454
平均值/10-6 10.32 0.093 69.98 21.64 0.034 27.11 27.90 72.45 12.29
中位数/10-6 9.98 0.083 70.00 21.45 0.030 26.50 27.40 71.05 12.40
变异系数/% 41.44 59.11 20.61 24.02 50.82 23.00 12.39 21.32 13.01
数据范围/10-6 1.84~59.70 0.023~0.790 31.40~197.8 9.15~55.15 0.015~0.258 10.40~62.10 19.40~53.20 42.00~213.4 6.76~17.2
(平均值±标准离差)/10-6 9.71±1.32 0.083±1.30 68.39±1.17 20.94±1.23 0.031±1.303 26.61±1.23 27.67±1.11 70.47±1.18 12.27±1.14
沉积岩表层,N=481
平均值/10-6 10.15 0.085 68.78 21.52 0.035 25.71 27.29 66.42 12.32
中位数/10-6 10.40 0.077 68.80 21.30 0.032 24.60 27.10 63.90 12.40
变异系数/% 24.45 44.98 18.45 18.35 37.57 24.55 11.78 18.10 13.10
数据范围/10-6 4.32~19.4 0.032~0.445 29.85~167.7 9~39 0.018~0.180 9.3~67.2 19.9~46.6 44~119.7 6.58~18
(平均值±标准离差)/10-6 9.89±1.29 0.077±1.34 67.45±1.15 21.23±1.18 0.032±1.265 24.94±1.22 27.04±1.12 65.16±1.18 12.25±1.13
花岗岩表层,N=251
平均值/10-6 10.03 0.085 69.16 20.40 0.039 26.73 28.03 71.55 12.06
中位数/10-6 9.70 0.081 68.10 20.10 0.032 25.60 27.80 69.90 12.20
变异系数/% 38.19 30.83 21.65 20.20 198.07 22.73 14.36 15.21 12.20
数据范围/10-6 3.80~33.05 0.030~0.255 36.9~170 11.5~33.8 0.016~1.25 13.1~56.2 20.2~46 46.7~108.7 8.26~15.4
(平均值±标准离差)/10-6 9.31±1.37 0.081±1.27 66.99±1.17 20.0±1.23 0.032±1.309 25.88±1.21 27.67±1.14 70.80±1.16 11.97±1.14
参数 As Cd Cr Cu Hg Ni Pb Zn Sc
火山岩表层,N=304
平均值/10-6 10.85 0.083 73.79 23.18 0.033 28.20 26.69 67.84 12.86
中位数/10-6 9.99 0.080 69.85 22.90 0.031 26.15 26.40 67.05 12.70
变异系数/% 50.85 28.56 25.29 21.77 29.46 31.06 11.73 16.48 14.02
数据范围/10-6 4.76~63.80 0.041~0.20 45~163.3 13.05~43.2 0.019~0.095 15.8~65.50 17.3~37.60 43.35~105.3 7.51~21.8
(平均值±标准离差)/10-6 9.84±1.30 0.079±1.31 71.45±1.25 22.65±1.23 0.032±1.276 26.92±1.31 26.49±1.12 66.99±1.18 12.74±1.13
第四系深层,N=2214
平均值/10-6 10.98 0.074 69.61 21.88 0.036 27.99 26.09 70.11 12.02
中位数/10-6 10.65 0.070 76.30 24.30 0.036 30.30 26.60 72.60 13.20
变异系数/% 45.32 37.47 25.88 29.19 27.86 27.32 12.53 21.29 25.19
数据范围/10-6 2.35~225 0.013~0.22 9.6~262 2.5~38.9 0.006~0.095 3.4~146.9 14~49.6 13.8~120.8 1.6~24.6
(平均值±标准离差)/10-6 10.30±1.31 0.070±1.45 71.78±1.22 21.63±1.35 0.034±1.33 27.42±1.32 26.00±1.13 70.80±1.21 12.05±1.28
变质岩深层,N=115
平均值/10-6 12.58 0.075 84.87 23.53 0.037 30.04 28.17 77.15 12.84
中位数/10-6 11.20 0.073 83.50 23.4 0.032 30.50 28 78.70 13.40
变异系数/% 140.56 31.04 33.76 40.02 41.26 45.93 12.75 16.17 19.40
数据范围/10-6 2.27~225 0.028~0.18 12.9~301.3 3.5~98.25 0.011~0.128 5.2~154.4 10.75~40.3 21~117.5 2.96~24.6
(平均值±标准离差)/10-6 10.94±1.28 0.071±1.32 82.04±1.16 22.18±1.29 0.034±1.38 28.91±1.23 28.18±1.11 76.56±1.18 12.91±1.16
沉积岩深层,N=131
平均值/10-6 11.32 0.073 80.62 23.03 0.038 29.63 27.32 74.15 12.91
中位数/10-6 11.30 0.071 79.80 23.6 0.037 29.20 27.3 75.00 13.20
变异系数/% 28.61 30.57 20.99 22.93 32.25 26.65 11.71 14.90 17.76
数据范围/10-6 2.66~28.4 0.017~0.20 15.75~180.7 4.7~40.6 0.013~0.115 6.9~68.00 17.80~40.3 39.5~108.3 3.96~19.2
(平均值±标准离差)/10-6 10.99±1.24 0.070±1.30 79.62±1.16 22.86±1.24 0.036±1.32 28.45±1.27 27.23±1.11 73.45±1.17 12.97±1.17
花岗岩深层,N=134
平均值/10-6 10.43 0.072 83.90 22.62 0.038 32.09 27.50 77.39 12.96
中位数/10-6 11.0 0.071 80.60 21.60 0.035 29.40 27.7 78.6 13.1
变异系数/% 27.39 26.53 32.29 34.66 37.41 68.26 11.76 15.79 17.73
数据范围/10-6 3.72~21.3 0.041~0.16 24.9~251.1 8.1~76.1 0.015~0.128 9.9~202.9 14.2~35.1 48.4~117.7 7.28~24.3
(平均值±标准离差)/10-6 10.26±1.32 0.070±1.29 78.52±1.16 21.33±1.27 0.035±1.32 28.84±1.23 27.48±1.12 76.38±1.17 12.79±1.16
火山岩深层,N=105
平均值/10-6 11.47 0.081 93.37 26.93 0.037 41.64 25.72 80.67 14.30
中位数/10-6 10.95 0.079 81.20 24.80 0.036 32.60 26.1 80.6 14.2
变异系数/% 31.55 36.26 41.49 36.68 29.78 88.93 12.25 17.21 19.78
数据范围/10-6 2.39~28.4 0.032~0.33 45.4~262.6 10.2~76.1 0.013~0.115 15.5~294.4 14.2~40.5 42.8~142.5 6.15~24.3
(平均值±标准离差)/10-6 11.09±1.23 0.076±1.34 82.99±1.27 24.83±1.21 0.036±1.27 33.19±1.37 25.88±1.10 80.17±1.15 14.19±1.15
Table 1  三江平原耕地表层和深层土壤重金属元素含量统计
Fig.2  表层土壤元素含量分布直方图
Fig.3  表层土壤元素含量分布箱型图
Fig.4  深层土壤元素含量分布箱型图
Fig.5  深层土壤元素含量分布直方图
Fig.6  三江平原表层土壤重金属元素空间分布
Fig.7  三江平原深层土壤重金属元素空间分布
元素 Pearson相关系数
第四系 变质岩 沉积岩 花岗岩 火山岩
As 0.018 0.009 0.380** 0.266** 0.216**
Cd 0.332** 0.178** 0.176** 0.091 0.140*
Cr 0.602** 0.185** 0.480** 0.395** 0.625**
Cu 0.584** 0.308** 0.440** 0.512** 0.414**
Hg 0.137** 0.250** 0.218** 0.100 0.249**
Ni 0.500** 0.252** 0.527** 0.488** 0.449**
Pb 0.264** 0.206** 0.268** 0.367** 0.045
Zn 0.314** 0.333** 0.299** 0.203** 0.470**
Table 2  三江平原表层及深层土壤中重金属元素间相关系数
[1] 宋运红, 刘凯, 戴慧敏, 等. 东北松辽平原35年来耕地土壤全氮时空变化最新报道[J], 中国地质, 2021, 48(1):332-333.
[1] Song Y H, Liu K, Dai H M, et al. Spatio-temporal variation of total N content in farmland soil of Songliao Plain in Northeast China during the past 35 years[J]. Geology in China, 2021, 48(1):332-333.
[2] 宋运红, 刘凯, 戴慧敏, 等. 松嫩平原东部典型黑土剖面孢粉组合及其时代和古气候意义[J]. 地质通报, 2020, https://kns.cnki.net/kcms/detail/11.4648.P.20201015.0930.002.html.
[2] Song Y H, Liu K, Dai H M, et al. Palynological assemblages of typical black soil profile in the eastern Songliao Plain and their age and paleoclimatic significances[J]. Geological Bulletin of China, 2020a, https://kns.cnki.net/kcms/detail/11.4648.P.20201015.0930.002.html.
[3] 宋运红, 刘凯, 戴慧敏, 等. 东北松辽平原典型黑土—古土壤剖面AMS14C年龄首次报道[J]. 中国地质, 2020, 47(6):1926-1927.
[3] Song Y H, Liu K, Dai H M, et al. The first reported of the AMS14C age of typical black soil mollisol—paleosol profile of Songliao Plain[J]. Geology in China, 2021,2020b, 47(6):1926-1927.
[4] 李斌, 段亚军, 张娜, 等. 典型农业区土壤 6 种重金属的人为污染情况及健康风险评价[J]. 环境与健康杂志, 2020, 37(3):246-248.
[4] Li B, Duan Y J, Zhang N, et al. Anthropogenic pollution and health risk assessment of six heavy metals in soil of a typical agricultural area[J]. J Environ Health, 2020, 37(3):246-248.
[5] Song Y H, Dai H M, Yang F C, et al. Temporal and spatial change of soil organic matter and pH in cultivated land of the Songliao Plain in Northeast China during the past 35 years[J]. Acta Geologica Sinica, 2019, 93(S):142-143.
[6] 张哲寰, 宋运红, 赵君, 等. 黑龙江省讷河市土壤某些微量元素地球化学特征[J]. 地质与资源, 2019, 28(4):378-382.
[6] Zhang Z H, Song Y H, Zhao J, et al. Trace element geochemistry of the soil in Nehe city,Heilongjiang Province[J]. Geology and resources, 2019, 28(4): 378-382.
[7] 张继舟, 吕品, 于志民, 等. 三江平原农田土壤重金属含量的空间变异与来源分析[J]. 华北农学报, 2014, 29(S):353-359.
[7] Zhang J Z, Lyu P, Yu Z M, et al. Spatial variability and source analysis of heavy metal content of agricultural soil in Sanjiang Plain[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(S):353-359.
[8] 曹宏杰, 王立民, 罗春雨, 等. 三江平原地区农田土壤中几种重金属空间分布状况[J]. 生态与农村环境学报, 2014, 30(2):155-161.
[8] Cao H J, Wang L M, Luo C Y. Spatial distribution of heavy metals in agricultural soil in Sanjiang Plain[J]. Journal of Ecology and Rural Environment, 2014, 30(2):155-161.
[9] 张宪依, 庞成宝, 王安婷, 等. 海南岛表层及深层土壤重金属分布特征及源解析[J]. 现代地质, 2020, 34(5):970-978.
[9] Zhang X Y, Pang C B, Wang A T, et al. Distribution characteristics and source identification of heavy metals in topsoils and subsoils of Hainan Island[J]. Geoscience, 2020, 34(5):970-978.
[10] 杨帅斌, 刘恋. 北京市不同功能区土壤黑碳的含量特征及其来源分析[J]. 地质力学学报, 2017, 23(6):846-855.
[10] Yang S B, Liu L. Concentration and sources of black carbon in different function zones of Beijing,China[J]. Journal of Geomechanics, 2017, 23(6):846-855.
[11] Lu A X, Wang J H, Qin X Y, et al. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi,Beijing,China[J]. Science of the Total Environment, 2012, 425:66-74.
doi: 10.1016/j.scitotenv.2012.03.003
[12] Bini C, Sartori G, Wahsha M, et al. Background levels of trace elements and soil geochemistry at regional level in NE Italy[J]. Journal of Geochemical Exploration, 2011, 109(1/3) :125-133.
doi: 10.1016/j.gexplo.2010.07.008
[13] Rodríguez J A, Arias M L, Grau J M. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain):Application of the multivariate geostatistical methods to study spatial variations[J]. Environmental Pollution, 2006, 144(3):1001-1012.
pmid: 16580763
[14] 李欢, 黄勇, 张沁瑞, 等. 北京平原区土壤地球化学特征及影响因素分析[J]. 物探与化探, 2021, 45(2):502-516.
[14] Li H, Huang Y, Zhang Q R, et al. Soil geochemical characteristics and influencing factors in Beijing Plain[J]. Geophysical and Geochemical Exploration, 2021, 45(2):502-516.
[15] Lyu J, Liu Y, Zhang Z, et al. Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils[J]. J.Hazard.Mater, 2013, 261:387-397.
[16] Frattini P, De Vivo B, Lima A, et al. Elemental and gamma-ray surveys in the volcanic soils of Ischia island,Italy[J]. Geochemistry:Exploration, Environment,Analysis, 2006, 6 (4):325-339.
doi: 10.1144/1467-7873/06-105
[17] Ansari A A, Singh I B, Tobschal H J. Importance of geomorphology and sedimentation processes for metal dispersion in sediments and soils of the Ganga Plain:Identification of geochemical domains[J]. Chemical Geology, 2000, 162(3):245-266.
doi: 10.1016/S0009-2541(99)00073-X
[18] Rognerud S, Hongve D, Fjeld E, et al. Trace metal concentrations in lake and overbank sediments in southern Norway[J]. Environ.Geol, 2000, 39(7):723-732.
[19] Fergusson, J E. The heavy elements: Chemistry,environmental impact and health effects[J]. New York:Pergamon Press, 1990:412.
[20] 尚二萍, 许尔琪, 张红旗, 等. 中国粮食主产区耕地土壤重金属时空变化与污染源分析[J]. 环境科学, 2018, 39(10):4670-4683.
[20] Shang E P, Xu E Q, Zhang H Q, et al. Spatial temporal trends and pollution source analysis for heavy metal contamination of cultivated soils in five major grain producing regions of China[J]. Environmental Science, 2018, 39(10):4670-4683.
[21] Yuan G L, Sun T H, Han P, et al. Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping:Typical urban renewal area in Beijing,China[J]. Journal of Geochemical Exploration, 2014, 136:40-47.
doi: 10.1016/j.gexplo.2013.10.002
[22] 张炜华, 于瑞莲, 杨玉杰, 等. 厦门某旱地土壤垂直剖面中微量迁移规律及来源解析[J]. 环境科学, 2019, 40(8):3764-3773.
[22] Zhang W H, Yu R L, Yang Y J, et al. Migration and source analysis of heavy metals in vertical soil profiles of the drylands of Xiamen City[J]. Environmental Science, 2019, 40(8):3764-3773.
[23] Zhang H H, Chen J J, Zhu L, et al. Anthropogenic mercury enrichment factors and contributions in soils of Guangdong Province,South China[J]. Journal of Geochemical Exploration, 2014, 144:312-319.
doi: 10.1016/j.gexplo.2014.01.031
[24] 魏复盛, 郑春江, 刘志虹, 等. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990:330-380.
[24] Wei F S, Zhen C J, Liu Z H, et al. Chinese soil element background values[M]. Beijing: China Environmental Science Press, 1990:330-380.
[25] 柴立立, 崔邢涛. 河北省重点城市土壤重金属污染评价与防治对策——以石家庄市为例[J]. 科学技术与工程, 2019, 19(3):261-269.
[25] Chai L L, Cui X T. Pollution assessments and prevention countermeasures of heavy metals of soil in main cities of Hebei Province:Taking Shijiazhuang as an example[J]. Science Technology and Engineering, 2019, 19(3) :261-269.
[26] 刘银飞, 孙彬彬, 贺灵, 等. 福建龙海土壤垂向剖面元素分布特征[J]. 物探与化探, 2016, 40(4): 713-721.
[26] Liu Y F, Sun B B, H L, et al. Distribution characteristics of elements in vertical soil profile in Longhai,Fujian province[J]. Geophysical and Geochemical Exploration, 2016, 40(4): 713-721.
[27] 宋运红, 张哲寰, 杨凤超, 等. 黑龙江海伦地区垦殖前后典型黑土剖面主要养分元素垂直分布特征[J]. 地质与资源, 2020, 26(6):543-549.
[27] Song Y H, Zhang Z H, Dai H M, et al. Vertical distribution characteristics of main nutrient elements in typical black soil profile before and after reclamation in Helun Area, Heilongjiang Province[J]. Geology and Resources, 2020, 26(6):543-549.
[1] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[2] 李永春, 苏日力格, 周文辉, 邰苏日嘎拉, 陈国栋, 王永亮, 高琪, 张祥, 张栋. 宁夏南部山区葫芦河流域土壤地球化学特征及影响因素分析[J]. 物探与化探, 2022, 46(4): 999-1010.
[3] 张沁瑞, 李欢, 邓宇飞, 黄勇, 张博, 许一波. 北京东南郊土壤重金属元素分布及其在表层土壤中的富集特征[J]. 物探与化探, 2022, 46(2): 490-501.
[4] 侯进凯, 宋延斌, 朱瑞祯, 莘丰培, 周建川, 鲁富兰, 姚婕. 洛阳市伊川县鸦岭镇—汝阳县小店镇一带表层土壤硒形态研究[J]. 物探与化探, 2022, 46(2): 511-517.
[5] 牛雪, 何锦, 庞雅婕, 明圆圆. 三江平原西部土壤硒分布特征及其影响因素[J]. 物探与化探, 2021, 45(1): 223-229.
[6] 赵秀芳, 张永帅, 冯爱平, 王艺璇, 夏立献, 王宏雷, 杜伟. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6): 1446-1454.
[7] 唐世琪, 万能, 曾明中, 杨柯, 刘飞, 彭敏, 李括, 杨峥. 恩施地区土壤与农作物硒镉地球化学特征[J]. 物探与化探, 2020, 44(3): 607-614.
[8] 鲍丽然, 严明书, 贾中民, 龚媛媛. 重庆西部表层土壤有机碳储量与密度分布[J]. 物探与化探, 2015, 39(1): 180-185.
[9] 崔元俊, 李肖鹏, 董建, 胡雪平. 山东烟台金矿区及城镇周边土壤重金属化学形态分布及转化[J]. 物探与化探, 2013, 37(6): 1100-1106.
[10] 刘文辉. 甘肃省张掖—永昌地区土壤重金属元素地球化学特征[J]. 物探与化探, 2013, 37(5): 883-888.
[11] 王存龙, 赵西强, 蒋文惠, 喻超, 王红晋, 刘华峰. 山东省乐陵—河口地区重金属污染现状与分布迁移规律[J]. 物探与化探, 2012, 36(3): 435-440.
[12] 栾进华, 程军, 王伟, 黄波, 蒙炳儒, 秦林. 奉节脐橙种植区土壤地球化学特征[J]. 物探与化探, 2011, 35(6): 829-832.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com