Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (3): 884-890    DOI: 10.11720/wtyht.2024.1368
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
跨孔电阻率法在城市输水管道渗漏监测中的应用
张巍(), 周瑜琨(), 刘立岩, 陈俊良
北京市地质调查研究所,北京 102206
Application of the cross-borehole resistivity method in the monitoring of leakage for urban water supply pipelines
ZHANG Wei(), ZHOU Yu-Kun(), LIU Li-Yan, CHEN Jun-Liang
Beijing Institute of Geological Survey, Beijing 102206, China
全文: PDF(3195 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

主输水管道在城市中多沿道路埋设,其管径大、埋藏深,渗漏前期不易察觉,渗漏后对城市交通和居民生活影响严重,故对输水管道的渗漏监测尤为重要。城市密集的交通线、硬化路面、电磁干扰等因素限制了地面电法、探地雷达等方法在管道监测中的应用。为弥补现有监测方法的不足,本文开展跨孔电阻率法在管道渗漏监测方面的研究。首先,通过正反演方法对渗漏管道、未渗漏管道进行模拟计算,分析跨孔电阻率法的探测特点。其次,通过试验对电极材质、埋设方法进行分析研究,解决了电极腐蚀、电场信号弱等问题。最后,在北京某处输水管道附近建立试验场,使用跨孔电阻率法获取了多期监测数据,通过对比多期电阻率断面,分析管道渗漏量的变化,圈定渗漏影响范围,得到了水厂渗漏数据的验证,取得了良好的监测效果,可为城市开展类似管道渗漏监测提供借鉴。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张巍
周瑜琨
刘立岩
陈俊良
关键词 跨孔电阻率法城市输水管道渗漏监测    
Abstract

Urban main water supply pipelines are mostly buried along roads. Large pipe diameters and deep burial depths make it hard to detect their leakage in the early stage. Their leakage will severely influence urban traffic and residents' daily life. Hence, the leakage monitoring of water supply pipelines is particularly important. However, factors such as dense traffic lines, hardened road surfaces, and electromagnetic interference limit the application of the ground resistivity method and geological radars in pipeline monitoring. To make up for the shortcomings of existing monitoring methods, this study explored the cross-hole resistivity method for pipeline leakage monitoring. First of all, pipelines with and without leakage were simulated using forward modeling and inversion methods, analyzing the detection characteristics of the cross-borehole resistivity method. Then, electrode materials and burial methods were examined through experiments, solving the problems of electrode corrosion and weak electric field signals. Finally, an experimental site was set up near a water supply pipeline in Beijing, obtaining multi-phase monitoring data using the cross-borehole resistivity method. Through comparative analysis of multi-phase resistivity sections, this study analyzed the changes in pipeline leakage, delineating the leakage influence scope, which was verified by the leakage data from the waterworks. The satisfactory monitoring results suggest that the method proposed in this study can be referenced for similar pipeline leakage monitoring in cities.

Key wordscross-borehole resistivity method    urban water supply pipeline    leakage    monitoring
收稿日期: 2023-08-25      修回日期: 2023-11-14      出版日期: 2024-06-20
ZTFLH:  P631  
基金资助:北京市地下空间资源调查评价及关键技术研究项目(PXM2017158203000006)
通讯作者: 周瑜琨(1988-),女,硕士,高级工程师,主要从事电法研究工作。Email: zhouyukun5200@163.com
作者简介: 张巍(1988-),男,硕士,高级工程师,主要从事电磁法研究工作。Email: zhangwei_7a@163.com
引用本文:   
张巍, 周瑜琨, 刘立岩, 陈俊良. 跨孔电阻率法在城市输水管道渗漏监测中的应用[J]. 物探与化探, 2024, 48(3): 884-890.
ZHANG Wei, ZHOU Yu-Kun, LIU Li-Yan, CHEN Jun-Liang. Application of the cross-borehole resistivity method in the monitoring of leakage for urban water supply pipelines. Geophysical and Geochemical Exploration, 2024, 48(3): 884-890.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1368      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I3/884
Fig.1  跨孔电阻率法观测模式及电流源镜像法示意
Fig.2  不同电极材质试验
a—电极浸水试验;b—纯铜电极和锡-铜电极;c—电极土壤中通电试验
Fig.3  接收信号对比
Fig.4  工区钻孔位置及电极系示意
Fig.5  低阻异常模型及反演电阻率断面
Fig.6  高阻异常模型及反演电阻率断面
Fig.7  不同监测日期的反演电阻率断面
[1] 褚选选. 基于噪声的长距离输水管道渗漏监测研究[D]. 郑州: 郑州大学, 2017.
[1] Chu X X. Seepage monitoring research on long-distance water transmission pipeline based on noise signal[D]. Zhengzhou: Zhengzhou University, 2017.
[2] 黄乐艺. 城市地下供水管线渗漏探地雷达正演模拟与解释方法应用研究[D]. 北京: 北京交通大学, 2016.
[2] Huang L Y. Application on the GPR forward simulation and interpretation methods for the leakage of underground water supply pipelines in the urban area[D]. Beijing: Beijing Jiaotong University, 2016.
[3] 季舒瑶, 袁飞, 程恩, 等. 基于声传播特性的供水管道泄漏检测与分类[J]. 南京大学学报: 自然科学版, 2015, 51(S1): 64-71.
[3] Ji S Y, Yuan F, Cheng E, et al. The detection and classification of water supply pipeline leak based on the acoustic propagation characteristics[J]. Journal of Nanjing University: Natural Sciences Edition, 2015, 51(S1): 64-71.
[4] 凌骐, 周林虎, 刘广林, 等. 大口径长距离输水管道渗漏原位监测研究[J]. 给水排水, 2014, 50(2): 112-116.
[4] Ling Q, Zhou L H, Liu G L, et al. Study on the in situ leakage detection of the long-distance water transmission pipe with large diameter[J]. Water & Wastewater Engineering, 2014, 50(2): 112-116.
[5] 王欲成, 王洪华, 苏鹏锦, 等. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3):794-803.
[5] Wang Y C, Wang H H, Su P J, et al. Simulated detection experiments of underground water supply pipeline leakage based on ground penetrating radar[J]. Geophysical and Geochemical Exploration, 2023, 47(3):794-803.
[6] 韩佳明, 仲鑫, 景帅, 等. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6):1476-1481.
[6] Han J M, Zhong X, Jing S, et al. The application of geological radar to urban geological pipeline detection in the loess area[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1476-1481.
[7] 王勇. 城市地下管线探测技术方法研究与应用[D]. 长春: 吉林大学, 2012.
[7] Wang Y. Study and application of detection techniques and methods of urban underground pipelines[D]. Changchun: Jilin University, 2012.
[8] 马吉静. 高密度电阻率法的异常识别和推断——以溶洞探测和寻找地下水为例[J]. 地球物理学进展, 2019, 34(4):1489-1498.
[8] Ma J J. Anomaly identification and inference of high density resistivity method:Take Karst cave exploration and groundwater exploration as an example[J]. Progress in Geophysics, 2019, 34(4):1489-1498.
[9] 郝晋荣, 李毛飞, 廖昱翔, 等. 直流电阻率法高阻管道漏点位置的探测与分析[J]. 地球物理学进展, 2018, 33(2):803-807.
[9] Hao J R, Li M F, Liao Y X, et al. Detecting and analyzing leak location of high resistivity pipeline by DC resistivity method[J]. Progress in Geophysics, 2018, 33(2):803-807.
[10] 张巍, 周瑜琨, 刘立岩, 等. 高密度电阻率法在南水北调输水管道渗漏探测中的应用[J]. 工程地球物理学报, 2021, 18(3):322-329.
[10] Zhang W, Zhou Y K, Liu L Y, et al. Application of high density resistivity method in leakage detection of water pipeline of south-to-north water diversion project[J]. Chinese Journal of Engineering Geophysics, 2021, 18(3):322-329.
[11] Palacios A, Ledo J J, Linde N, et al. Time-lapse cross-hole electrical resistivity tomography (CHERT) for monitoring seawater intrusion dynamics in a Mediterranean aquifer[J]. Hydrology and Earth System Sciences, 2020, 24(4):2121-2139.
[12] Leontarakis K, Apostolopoulos G V. Laboratory study of the cross-hole resistivity tomography:The model stacking (MOST) technique[J]. Journal of Applied Geophysics, 2012,80:67-82.
[13] 蒋林城, 肖宏跃, 丁尚见, 等. 跨孔电阻率法装置灵敏度分析及分辨率讨论[J]. 地球物理学进展, 2018, 33(2):815-822.
[13] Jiang L C, Xiao H Y, Ding S J, et al. Analysis of sensitivity of arrays and resolution discussion of cross-hole resistivity method[J]. Progress in Geophysics, 2018, 33(2):815-822.
[14] Ingham M, Pringle D, Eicken H. Cross-borehole resistivity tomography of sea ice[J]. Cold Regions Science and Technology, 2008, 52(3):263-277.
[15] Pidlisecky A, Moran T, Hansen B, et al. Electrical resistivity imaging of seawater intrusion into the Monterey Bay aquifer system[J]. Ground Water, 2016, 54(2):255-261.
doi: 10.1111/gwat.12351 pmid: 26085452
[16] Costall A, Harris B, Pigois J P. Electrical resistivity imaging and the saline water interface in high-quality coastal aquifers[J]. Surveys in Geophysics, 2018, 39(4):753-816.
[17] Wilkinson P B, Meldrum P I, Kuras O, et al. High-resolution Electrical Resistivity Tomography monitoring of a tracer test in a confined aquifer[J]. Journal of Applied Geophysics, 2010, 70(4):268-276.
[18] Kuras O, Pritchard J D, Meldrum P I, et al. Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT)[J]. Comptes Rendus Geoscience, 2009, 341(10/11):868-885.
[19] Looms M C, Jensen K H, Binley A, et al. Monitoring unsaturated flow and transport using cross-borehole geophysical methods[J]. Vadose Zone Journal, 2008, 7(1):227-237.
[20] 安聪, 毕文达, 赵永辉. 跨孔电阻率CT在防汛墙抛石探测中的应用[J]. 工程地球物理学报, 2018, 15(6):764-770.
[20] An C, Bi W D, Zhao Y H. Application of cross-hole resistivity CT method to the riprap detection in flood prevention wall[J]. Chinese Journal of Engineering Geophysics, 2018, 15(6):764-770.
[21] 赵家福. 跨孔超高密度电阻率CT法在建筑物旧有桩基探测中的应用研究[J]. 工程地球物理学报, 2020, 17(1):45-51.
[21] Zhao J F. Application of cross-hole ultra-high density resistivity CT method to detection of old pile foundations in buildings[J]. Chinese Journal of Engineering Geophysics, 2020, 17(1):45-51.
[22] 俞仁泉, 赵鹏辉, 廖顺. 跨孔电阻率CT法在岩溶精确勘探中的应用研究[J]. 灾害学, 2019, 34(S1):142-145.
[22] Yu R Q, Zhao P H, Liao S. Application of cross-hole resistivity CT method in precise Karst exploration[J]. Journal of Catastropho-logy, 2019, 34(S1):142-145.
[23] 梁森, 陈建华, 李宏涛, 等. 基于松鼠搜索算法的跨孔电阻率溶洞探测[J]. 物探与化探, 2022, 46(5):1296-1305.
[23] Liang S, Chen J H, Li H T, et al. Detection of Karst caves using the cross-hole resistivity method based on the squirrel search algorithm[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1296-1305.
[24] 罗先中, 李达为, 彭芳苹, 等. 抗干扰编码电法仪的实现及应用[J]. 地球物理学进展, 2014, 29(2):944-951.
[24] Luo X Z, Li D W, Peng F P, et al. Implementation and applications of an coded electrical instrument with anti-interference ability[J]. Progress in Geophysics, 2014, 29(2):944-951.
[1] 李秋辰, 陈冬, 许文豪, 易善鑫, 谢兴隆, 关俊朋, 崔芳姿. 基于微地震连续裂缝网络模型的SRV研究[J]. 物探与化探, 2023, 47(4): 1048-1055.
[2] 周建兵, 罗锐恒, 贺昌坤, 潘晓东, 张绍敏, 彭聪. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3): 707-717.
[3] 胡志方, 罗卫锋, 王胜建, 康海霞, 周惠, 张云枭, 詹少全. 广域电磁法在安页2井压裂监测应用探索[J]. 物探与化探, 2023, 47(3): 718-725.
[4] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[5] 汪媛媛, 华明, 金洋, 崔晓丹, 许伟伟, 李文博, 刘玮晶, 汪子意, 文宇博. 基于GIS和统计学的土壤监测指标时空变化分析[J]. 物探与化探, 2023, 47(1): 217-227.
[6] 刘志同, 陈儒军, 崔益安, 王小杰, 王子辉, 刘瑨. 基于Android平台的192道自然电位监测仪测控软件开发[J]. 物探与化探, 2022, 46(6): 1523-1527.
[7] 梁森, 陈建华, 李宏涛, 罗威力, 罗盈洲, 艾姣姣, 廖伟. 基于松鼠搜索算法的跨孔电阻率溶洞探测[J]. 物探与化探, 2022, 46(5): 1296-1305.
[8] 邓明, 王猛, 吴雯, 马晓茜, 罗贤虎. 海洋可控源电磁发射系统中的绝缘在线监测技术研究[J]. 物探与化探, 2022, 46(3): 537-543.
[9] 吴雯, 王猛, 杨迪琨, 陈默, 任林彬. 页岩气水力压裂分布式微弱电场监测技术初探[J]. 物探与化探, 2022, 46(3): 557-562.
[10] 邹雨, 王国建, 杨帆, 陈媛. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展[J]. 物探与化探, 2022, 46(1): 1-11.
[11] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[12] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[13] 陈学群, 李成光, 田婵娟, 刘丹, 辛光明, 管清花. 高密度电阻率法在咸水入侵监测中的应用[J]. 物探与化探, 2021, 45(5): 1347-1353.
[14] 解庆锋, 周小果, 王振峰, 马振波, 李胜昌, 张得恩, 司法祯. 河南省土壤环境监测背景点位布设参考区域划分研究[J]. 物探与化探, 2021, 45(5): 1164-1170.
[15] 王国建, 卢丽, 杨俊, 李吉鹏, 任春, 唐俊红, 李武. 壤中游离气方法及其在油气化探中的应用[J]. 物探与化探, 2021, 45(1): 11-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com