Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (4): 975-985    DOI: 10.11720/wtyht.2023.1437
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于非结构有限元的电阻率超前探测中旁侧异常影响特征研究
陈海文1(), 叶益信2(), 杨烁健1, 覃金生1
1.东华理工大学 地球物理与测控技术学院,江西 南昌 330013
2.中国矿业大学 资源与地球科学学院,江苏 徐州 221116
A study on the influence of side anomalies in resistivity-based advance detection based on an unstructured finite element method
CHEN Hai-Wen1(), YE Yi-Xin2(), YANG Shuo-Jian1, QIN Jin-Sheng1
1. School of Geophysics and Measurement-control Technology,East China University of Technology,Nanchang 330013,China
2. School of Resources and Geosciences,China University of Mining and Technology,Xuzhou 221116,China
全文: PDF(7471 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了进一步探究旁侧异常体在巷道电阻率超前探测中的影响规律,提高探测精度,采用基于对偶加权后验误差估计的自适应非结构有限元法进行三维正演研究。首先通过无限大垂直板状体模型验证了该方法在超前探测模拟中的适用性和准确性,建立无旁侧异常体模型模拟巷道中的超前探测响应;然后分别对高低阻旁侧异常体的方位、与巷道和掌子面的距离、巷道大小、不同供电和接收方式以及在多层介质中对超前探测的影响进行了数值模拟。结果表明:巷道前方异常体的实际位置可由异常曲线极值推断出;高低阻旁侧异常体的响应总体上不会掩盖巷道前方的异常响应特征,但会使对应范围内的异常曲线出现凸形或凹形畸变,畸变位置与实际位置相符合;巷道空腔的存在加强了底板异常响应,不同巷道大小对顶板异常影响不同,总体上不会影响巷道前方的异常响应;多层地层中,异常响应曲线仍能反映出旁侧异常体的实际位置,巷道前方的异常响应特征是否会被掩盖要视各层电阻率大小情况而定。干扰异常的辨别需要结合实际进一步开展研究。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈海文
叶益信
杨烁健
覃金生
关键词 电阻率超前探测旁侧异常体巷道自适应有限元异常幅度    
Abstract

To further explore the influence patterns of side anomalies in resistivity-based advance detection for roadways and to improve the detection accuracy,this study conducted three-dimensional forward modeling using an adaptive unstructured finite element method based on dual weighted posteriori error estimation.First,this study verified the applicability and accuracy of this method in the simulation of advanced detection using an infinite vertical plate model.Then,it established a model without considering side anomalies to simulate the advance detection response in roadways.Then,it conducted numerical simulations of high- and low-resistivity side anomalies' directions,the distances from side anomalies to roadways and mining faces,roadway sizes,power supply and reception ways,and the influence of side anomalies on advance detection in multi-layer media.Finally,this study analyzed the morphological characteristics of apparent resistivity anomaly curves.The results are as follows:(1)The actual positions of anomalies in front of roadways can be inferred from the extreme values of anomaly curves;(2)The responses of high- and low-resistivity side anomalies generally do not mask the response characteristics of anomalies in front of roadways.However,they can distort the anomaly curves in the corresponding range by making them convex or concave,with the distortion positions consistent with the actual positions of anomalies;(3)The presence of roadway cavities enhances the responses of anomalies on roadway floors.Although different roadway sizes impose different effects on anomalies on roadway rooves,they do not affect the responses of anomalies in front of roadways in general;(4)In multi-layer strata,anomaly response curves can still reflect the actual positions of side anomalies.Whether the response characteristics of anomalies in front of roadways are masked depends on the resistivity of each layer;(5)The identification of interference anomalies requires further research in combination with actual conditions.

Key wordsresistivity-based advance detection    side anomaly    roadway    adaptive finite element    anomaly amplitude
收稿日期: 2022-09-15      修回日期: 2022-11-28      出版日期: 2023-08-20
ZTFLH:  P631.3  
基金资助:国家自然科学基金项目(42274104)
通讯作者: 叶益信(1983-),男,博士,副教授,硕士生导师,主要从事电法勘探正反演研究及应用工作。Email:yixinye321@126.com
作者简介: 陈海文(1998-),男,硕士,研究方向为电法勘探正反演研究。Email:haiwen6603@163.com
引用本文:   
陈海文, 叶益信, 杨烁健, 覃金生. 基于非结构有限元的电阻率超前探测中旁侧异常影响特征研究[J]. 物探与化探, 2023, 47(4): 975-985.
CHEN Hai-Wen, YE Yi-Xin, YANG Shuo-Jian, QIN Jin-Sheng. A study on the influence of side anomalies in resistivity-based advance detection based on an unstructured finite element method. Geophysical and Geochemical Exploration, 2023, 47(4): 975-985.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1437      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I4/975
Fig.1  超前探测原理示意
Fig.2  地下无限大板状体模型剖面
Fig.3  局部非结构网格剖面
Fig.4  视电阻率数值解与解析解的对比
Fig.5  局部巷道内部的网格剖分
Fig.6  带巷道的旁侧异常体模型
Fig.7  距离d变化时的异常曲线
Fig.8  异常体ρ变化时的异常曲线
Fig.9  极值位置与实际位置的关系拟合曲线
Fig.10  不同方位旁侧异常体的异常曲线
Fig.11  无巷道的上下方异常响应曲线
Fig.12  离巷道不同距离的旁侧异常曲线
Fig.13  离掌子面不同距离的旁侧异常曲线
Fig.14  不同巷道大小的底板异常曲线
Fig.15  不同巷道大小的顶板异常曲线
Fig.16  不同方式供电和接收示意
Fig.17  不同方式供电和接收的旁侧异常曲线
Fig.18  3层层状地层模型
参数项 模型编号
1 2 3 4 5 6 7 8 9
ρ1 200 100 300 200 200 200 200 100 300
ρ2 200 200 200 100 300 200 200 200 200
ρ3 200 200 200 200 200 100 300 300 100
Table 1  3层层状模型的电阻率参数
Fig.19  不同介质电阻率的异常曲线
Fig.20  不同h2厚度的异常曲线
[1] 程久龙, 王玉和, 于师建, 等. 巷道掘进中电阻率法超前探测原理与应用[J]. 煤田地质与勘探, 2000, 28(4):60-62.
[1] Cheng J L, Wang Y H, Yu S J, et al. The principle and application of advance surveying in roadway excavation by resistivity method[J]. Coal Geology & Exploration, 2000, 28(4):60-62.
[2] 黄俊革, 王家林, 阮百尧. 坑道直流电阻率法超前探测研究[J]. 地球物理学报, 2006, 49(5):1529-1538.
[2] Huang J G, Wang J L, Ruan B Y. A study on advanced detection using DC resistivity method in tunnel[J]. Chinese Journal of Geophysics, 2006, 49(5):1529-1538.
[3] 阮百尧, 邓小康, 刘海飞, 等. 坑道直流电阻率超前聚焦探测新方法研究[J]. 地球物理学报, 2009, 52(1):289-296.
[3] Ruan B Y, Deng X K, Liu H F, et al. Research on a new method of advanced focus detection with DC resistivity in tunnel[J]. Chinese Journal of Geophysics, 2009, 52(1):289-296.
[4] 刘志民, 李冰, 潘越, 等. 坑道直流聚焦多点电源探测聚焦与偏转效应研究[J]. 煤炭科学技术, 2021, 49(11):174-179.
[4] Liu Z M, Li B, Pan Y, et al. Research on focusing and deflection effect of detection with DC focusing multipoint current sources in tunnel[J]. Coal Science and Technology, 2021, 49(11):174-179.
[5] 王敏, 刘玉, 牟义, 等. 多装置矿井直流电法巷道超前探测研究及应用[J]. 煤炭学报, 2021, 46(S1):396-405.
[5] Wang M, Liu Y, Mu Y, et al. Research and application of multi array mine DC electrical method for roadway advanced detection[J]. Journal of China Coal Society, 2021, 46(S1):396-405.
[6] 张淼淼, 石显新. 巷道渐进式排列超前探测正演模拟[J]. 煤炭技术, 2022, 41(4):71-74.
[6] Zhang M M, Shi X X. Forward simulation of progressive arrangement advance detection in roadway[J]. Coal Technology, 2022, 41(4):71-74.
[7] 王鹏, 鲁晶津, 王信文. 再论巷道直流电法超前探测技术的有效性[J]. 煤炭科学技术, 2020, 48(12):257-263.
[7] Wang P, Lu J J, Wang X W. Restudy on effectivty of direct current advance detection method in roadway[J]. Coal Science and Technology, 2020, 48(12):257-263.
[8] 李飞, 张永超, 连会青, 等. 掘进工作面直流电法超前探测技术问题探讨[J]. 煤炭科学技术, 2020, 48(12):250-256.
[8] Li F, Zhang Y C, Lian H Q, et al. Discussion on problems of direct current advance detection method in roadway driving face[J]. Coal Science and Technology, 2020, 48(12):250-256.
[9] 韩德品, 李丹, 程久龙, 等. 超前探测灾害性含导水地质构造的直流电法[J]. 煤炭学报, 2010, 35(4):635-639.
[9] Han D P, Li D, Cheng J L, et al. DC method of advanced detecting disastrous water-conducting or water-bearing geological structures along same layer[J]. Journal of China Coal Society, 2010, 35(4):635-639.
[10] 王恩营, 李锐, 刘仰光, 等. 井下直流电法超前探测低阻区水与瓦斯视电阻率响应分析[J]. 煤矿安全, 2018, 49(3):168-171.
[10] Wang E Y, Li R, Liu Y G, et al. Analysis of apparent resistivity response on water and gas in low resistivity zone by underground DC advance method[J]. Safety in Coal Mines, 2018, 49(3):168-171.
[11] 胡雄武, 张平松. 坑道隐伏陷落柱直流电阻率法超前探测分析[J]. 地球物理学进展, 2019, 34(3):1176-1183.
[11] Hu X W, Zhang P S. Analysis of hidden collapse column ahead of tunneling face detected by DC resistivity method[J]. Progress in Geophysics, 34(3):1176-1183.
[12] 韩德品, 石学锋, 石显新, 等. 煤矿老窑积水巷道直流电法超前探测异常特征研究[J]. 煤炭科学技术, 2019, 47(4):157-161.
[12] Han D P, Shi X F, Shi X X, et al. Study on anomaly characteristics of in-advance DC electric detection of water-accumulated roadway in abandoned coal mines[J]. Coal Science and Technology, 2019, 47(4):157-161.
[13] 岳建华, 李志聃. 矿井直流电法勘探中的巷道影响[J]. 煤炭学报, 1999, 24(1):9-12.
[13] Yue J H, Li Z D. Roadway influence on electrical prospecting in underground mine[J]. Journal of China Coal Society, 1999, 24(1):9-12.
[14] 马炳镇, 李貅. 矿井直流电法超前探中巷道影响的数值模拟[J]. 煤田地质与勘探, 2013, 41(1):78-81.
[14] Ma B Z, Li X. Roadway influences on advanced DC detection in underground mine[J]. Coal Geology & Exploration, 2013, 41(1):78-81.
[15] 翟培合, 刘玉, 牛超, 等. 起伏巷道直流电阻率法超前探测数值模拟[J]. 煤矿安全, 2014, 45(2):138-140,144.
[15] Zhai P H, Liu Y, Niu C, et al. Numerical simulation of advanced detection with DC resistivity in fluctuation tunnel[J]. Safety in Coal Mines, 2014, 45(2):138-140,144.
[16] 翟培合, 任科科, 张钊, 等. 基于比较法消除巷道影响的三维电法超前探测技术[J]. 煤矿安全, 2021, 52(7):67-71,78.
[16] Zhai P H, Ren K K, Zhang Z, et al. Three-dimensional electrical method advanced detection technology based on comparative method to eliminate the influence of roadway[J]. Safety in Coal Mines, 2021, 52(7):67-71,78.
[17] 占文锋, 武玉梁, 李文. 矿井直流电法全空间电场分布数值模拟及影响因素[J]. 煤田地质与勘探, 2018, 46(1):139-147.
[17] Zhan W F, Wu Y L, Li W. Simulation and analysis of electric field distribution and its influence factors in coal mine direct current method[J]. Coal Geology & Exploration, 2018, 46(1):139-147.
[18] 石学锋. 层状空间矿井直流电法超前探测曲线特征研究[J]. 煤炭技术, 2019, 38(2):68-70.
[18] Shi X F. Research on characteristics of advance DC electric detection curve of mine in layered space[J]. Coal Technology, 2019, 38(2):68-70.
[19] 阮百尧, 邓小康, 刘海飞, 等. 坑道直流电阻率超前聚焦探测的影响因素及最佳观测方式[J]. 地球物理学进展, 2010, 25(4):1380-1386.
[19] Ruan B Y, Deng X K, Liu H F, et al. Influential factors and optimum survey method of advanced focus detection with DC resistivity in tunnels[J]. Progress in Geophysics, 2010, 25(4):1380-1386.
[20] 柳建新, 邓小康, 郭荣文, 等. 坑道直流聚焦超前探测电阻率法有限元数值模拟[J]. 中国有色金属学报, 2012, 22(3):970-975.
[20] Liu J X, Deng X K, Guo R W, et al. Numerical simulation of advanced detection with DC focus resistivity in tunnel by finite element method[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(3):970-975.
[21] 鲁晶津, 吴小平. 巷道直流电阻率法超前探测三维数值模拟[J]. 煤田地质与勘探, 2013, 41(6):83-86.
[21] Lu J J, Wu X P. 3D numerical modeling of tunnel DC resistivity for in-advance detection[J]. Coal Geology & Exploration, 2013, 41(6):83-86.
[22] 石学锋. 矿井直流电法超前探测影响因素数值模拟[J]. 煤炭技术, 2016, 35(11):122-124.
[22] Shi X F. Numerical simulation of influencing factors in advance DC electric detection in coal mines[J]. Coal Technology, 2016, 35(11):122-124.
[23] 张卫, 邱占林. 坑道超前探测技术方法研究及趋势[J]. 煤炭技术, 2021, 40(7):68-70.
[23] Zhang W, Qiu Z L. Research and development of advanced tunnel detection technology[J]. Coal Technology, 2021, 40(7):68-70.
[24] 严波, 刘颖, 叶益信. 基于对偶加权后验误差估计的2.5维直流电阻率自适应有限元正演[J]. 物探与化探, 2014, 38(1):145-150.
[24] Yan B, Liu Y, Ye Y X. 2.5D direct current resistivity adaptive finite-element numerical modeling based on dual weighted posteriori error estimation[J]. Geophysical and Geochemical Exploration, 2014, 38(1):145-150.
[25] Ye Y X, Hu X Y, Xu D. A goal-oriented adaptive finite element method for 3D resistivity modeling using dual-error weighting approach[J]. Journal of Earth Science, 2015, 26(6):821-826.
doi: 10.1007/s12583-015-0598-8
[1] 胡博文, 陈立, 么红超, 张发旺, 张瑾, 赵淼. 综合物探在煤巷道断裂施工段富水性判别中的应用[J]. 物探与化探, 2015, 39(4): 867-871.
[2] 严波, 刘颖, 叶益信. 基于对偶加权后验误差估计的2.5维直流电阻率自适应有限元正演[J]. 物探与化探, 2014, 38(1): 145-150.
[3] 扈本娜, 刘国辉, 苗景春. 综合物探方法探测城市地下巷道的可行性[J]. 物探与化探, 2012, 36(S1): 150-153.
[4] 刘振庆, 于景邨, 胡兵, 廖俊杰. 矿井瞬变电磁法在探查迎头前方构造中的应用[J]. 物探与化探, 2011, 35(1): 140-142.
[5] 王大庆, 张华恩, 许新刚. 均匀围岩介质中点源电流场的巷道影响模拟研究[J]. 物探与化探, 2003, 27(4): 316-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com