Spatio-temporal distribution of groundwater in the local area of Pinggu,Beijing derived using the time-lapse resistivity method
LI Kai-Fu1(), MA Huan2,3(), ZHANG Yan3,4, LI Wei-Long2,3, JIANG Ji-Yi2,3, HUANG Bin1, ZHANG Long-Guan1, QIN Meng-Bo2,3
1. China Railway Engineering Services Co.,Ltd.,Chengdu 610036,China 2. School of Earth Sciences,Institute Disaster of Prevention,Langfang 065201,China 3. Hebei Key Laboratory of Earthquake Dynamics,Langfang 065201,China 4. School of Ecology and Environment,Institute of Disaster Prevention, Langfang 065201,China
The plain area in Pinggu is a major groundwater source for Beijing.To ascertain the spatio-temporal distribution of groundwater in the study area without damaging the strata,this study,using the non-intrusive time-lapse resistivity method,conducted the reciprocal measurements with Wenner and dipole-dipole arrays in Beiyangjiaqiao Village,Pinggu District.The least-squares inversion results of the profile observation data and normalized data show that:(1)the phreatic and confined aquifers in the study area are approximately horizontally stratified,with the phreatic aquifer being recharged from the north and flowing from north to south;(2)during the entire observation period,the phreatic aquifer showed a drop in water level and leakage into the confined aquifer below;(3)the water content in the aeration zone increased from April 24,2021 to September 12,2021.In contrast,the water content in the confined aquifer remained relatively stable in this period,without experiencing significant changes.The results of this study lay the foundation for the subsequent research on Quaternary strata and groundwater in the study area.Moreover,they can be used as an important reference for the development,management,and utilization of groundwater in the study area and provide a new philosophy for research on the dynamic process of groundwater.
李开富, 马欢, 张艳, 李威龙, 姜纪沂, 黄斌, 章龙管, 秦孟博. 基于时移电阻率法的平谷局部地区地下水时空特征研究[J]. 物探与化探, 2023, 47(4): 1002-1009.
LI Kai-Fu, MA Huan, ZHANG Yan, LI Wei-Long, JIANG Ji-Yi, HUANG Bin, ZHANG Long-Guan, QIN Meng-Bo. Spatio-temporal distribution of groundwater in the local area of Pinggu,Beijing derived using the time-lapse resistivity method. Geophysical and Geochemical Exploration, 2023, 47(4): 1002-1009.
Xu H Z, Li G M, Zhang S Q, et al. Development of a 3-D numerical groundwater flow model of the Pinggu Basin and groundwater resources management[J]. Hydrogeology & Engineering Geology, 2011, 38(2):27-34.
Jiang T S, Qu C X, Wang M Y, et al. Hydrochemical characteristics of shallow groundwater and the origin in the Pinggu Plain,Beijing[J]. Journal of Arid Land Resources and Environment, 2017, 31(11):122-127.
Wang L Y, Liu J R, Zhou T, et al. Analysis of sustainable groundwater resources development scenarios in the Beijing Plain[J]. Hydrogeology & Engineering Geology, 2010, 37(1):9-17.
[5]
Travelletti J, Sailhac P, Malet J P, et al. Hydrological response of weathered clay-shale slopes:water infiltration monitoring with time-lapse electrical resistivity tomography[J]. Hydrological Processes, 2012, 26(14):2106-2119.
doi: 10.1002/hyp.v26.14
[6]
Xu D, Hu X Y, Shan C L, et al. Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography[J]. Applied Geophysics, 2016, 13(1):1-12.
doi: 10.1007/s11770-016-0543-3
[7]
Chambers J E, Gunn D A, Wilkinson P B, et al. 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment[J]. Near Surface Geophysics, 2014, 12(1):61-72.
doi: 10.3997/1873-0604.2013002
[8]
Xu S, Sirieix C, Riss J, et al. A clustering approach applied to time-lapse ERT interpretation—Case study of Lascaux cave[J]. Journal of Applied Geophysics, 2017, 144:115-124.
doi: 10.1016/j.jappgeo.2017.07.006
[9]
Legaz A, Vandemeulebrouck J, Revil A, et al. A case study of resistivity and self-potential signatures of hydrothermal instabilities,Inferno Crater Lake,Waimangu,New Zealand[J]. Geophysical Research Letters, 2009, 36(12):L12306.
doi: 10.1029/2009GL037573
[10]
Power C, Gerhard J I, Karaoulis M, et al. Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation[J]. Journal of Contaminant Hydrology, 2014, 162:27-46.
[11]
Power C, Gerhard J I, Tsourlos P, et al. Improved time-lapse electrical resistivity tomography monitoring of dense non-aqueous phase liquids with surface-to-horizontal borehole arrays[J]. Journal of Applied Geophysics, 2015, 112:1-13.
doi: 10.1016/j.jappgeo.2014.10.022
[12]
Tesfaldet Y T, Puttiwongrak A. Seasonal groundwater recharge characterization using time-lapse electrical resistivity tomography in the Thepkasattri watershed on Phuket Island,Thailand[J]. Hydro-logy, 2019, 6(2):36.
[13]
Chang P Y, Puntu J M, Lin D J, et al. Using time-lapse resistivity imaging methods to quantitatively evaluate the potential of groundwater reservoirs[J]. Water, 2022, 14(3):420.
doi: 10.3390/w14030420
[14]
Bai L G, Huo Z J, Zeng Z F, et al. Groundwater flow monitoring using time-lapse electrical resistivity and self potential data[J]. Journal of Applied Geophysics, 2021, 193,104411.
doi: 10.1016/j.jappgeo.2021.104411
[15]
Meyerhoff S B, Maxwell R M, Revil A, et al. Characterization of groundwater and surface water mixing in a semiconfined karst aquifer using time-lapse electrical resistivity tomography[J]. Water Resources Research, 2014, 50(3):2566-2585.
doi: 10.1002/wrcr.v50.3
[16]
Chambers J E, Meldrum P I, Wilkinson P B, et al. Spatial monitoring of groundwater drawdown and rebound associated with quarry dewatering using automated time-lapse electrical resistivity tomography and distribution guided clustering[J]. Engineering Geo-logy, 2015, 193:412-420.
Deng Z Z. Optimization of groundwater pollution monitoring network in typical polluted areas in Pinggu basin[D]. Beijing: China University of Geosciences (Beijing), 2021.
Wang X J, Han X, Xu M J, et al. Application of environmental isotopes in the study of lateral recharge in front of Pinggu basin Beijing[J]. Geological Review, 2023, 69(1):266-274.
Zhou H B. Application of 3D density inversion algorithm in western Sichuan and Sanhe-Pinggu region[D]. Langfang: Insitute of Disaster Prevention, 2022.
Deng Q H, Wang J J, Tang J, et al. Electrical structures of the crust and upper mantle in Sanhe-Pinggu M8 earthquake area,China[J]. Seismology and Geology, 2001, 23(2):178-185.
Fu T T. Study on application of EnKF method in groundwater numerical simulation in Pinggu district,Beijing[D]. Beijing: China University of Geosciences (Beijing), 2021.
[22]
Daily W, Ramirez A, LaBrecque D, et al. Electrical resistivity tomography of vadose water movement[J]. Water Resources Research, 1992, 28(5):1429-1442.
doi: 10.1029/91WR03087
[23]
Miller C R, Routh P S, Brosten T R, et al. Application of time-lapse ERT imaging to watershed characterization[J]. Geophysics, 2008, 73(3):G7-G17.
doi: 10.1190/1.2907156
[24]
Daily W, Ramirez A, Binley A, et al. Electrical resistance tomography[J]. The Leading Edge, 2004, 23(5):438-442.
doi: 10.1190/1.1729225
[25]
LaBrecque D J, Yang X J. Difference inversion of ERT data:a fast inversion method for 3-D in situ monitoring[J]. Journal of Environmental and Engineering Geophysics, 2001, 6(2):83-89.
doi: 10.4133/JEEG6.2.83
[26]
Cassiani G, Bruno V, Villa A, et al. A saline trace test monitored via time-lapse surface electrical resistivity tomography[J]. Journal of Applied Geophysics, 2006, 59(3):244-259.
doi: 10.1016/j.jappgeo.2005.10.007
Ma H, Zhang H Y, Guo Y, et al. The normalized data inversion of time-lapse resistivity method for resolving small resistivity changes[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1320-1325.
[28]
Kim J H, Yi M J, Park S G, et al. 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model[J]. Journal of Applied Geophysics, 2009, 68(4):522-532.
doi: 10.1016/j.jappgeo.2009.03.002
[29]
Hayley K, Pidlisecky A, Bentley L R. Simultaneous time-lapse electrical resistivity inversion[J]. Journal of Applied Geophysics, 2011, 75(2):401-411.
doi: 10.1016/j.jappgeo.2011.06.035
[30]
Loke M H, Dahlin T. A comparison of the gauss-newton and quasi-newton methods in resistivity imaging inversion[J]. Journal of Applied Geophysics, 2002, 49(3):149-162.
doi: 10.1016/S0926-9851(01)00106-9
[31]
LaBrecque D J, Miletto M, Daily W, et al. The effects of noise on Occam’s inversion of resistivity tomography data[J]. Geophysics, 1996, 61(2):538-548.
doi: 10.1190/1.1443980
Ruan B Y. A generation method of the partial derivatives of the apparent resistivity with respect to the model resistivity parameter[J]. Geology and Prospecting, 2001, 37(6):39-41.