Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (4): 1002-1009    DOI: 10.11720/wtyht.2023.1515
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于时移电阻率法的平谷局部地区地下水时空特征研究
李开富1(), 马欢2,3(), 张艳3,4, 李威龙2,3, 姜纪沂2,3, 黄斌1, 章龙管1, 秦孟博2,3
1.中铁工程服务有限公司,四川 成都 610036
2.防灾科技学院 地球科学学院,河北 廊坊 065201
3.河北省地震动力学重点实验室,河北 廊坊 065201
4.防灾科技学院 生态环境学院,河北 廊坊 065201
Spatio-temporal distribution of groundwater in the local area of Pinggu,Beijing derived using the time-lapse resistivity method
LI Kai-Fu1(), MA Huan2,3(), ZHANG Yan3,4, LI Wei-Long2,3, JIANG Ji-Yi2,3, HUANG Bin1, ZHANG Long-Guan1, QIN Meng-Bo2,3
1. China Railway Engineering Services Co.,Ltd.,Chengdu 610036,China
2. School of Earth Sciences,Institute Disaster of Prevention,Langfang 065201,China
3. Hebei Key Laboratory of Earthquake Dynamics,Langfang 065201,China
4. School of Ecology and Environment,Institute of Disaster Prevention, Langfang 065201,China
全文: PDF(3297 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

平谷平原区是北京市重要的地下水水源地之一。为了解地下水的时空分布特征且不破坏地层,在平谷区北杨家桥村开展了非侵入式的时移电阻率法温纳装置和偶极—偶极装置互换观测。剖面观测数据和其归一化数据的最小二乘法反演结果表明:研究区潜水含水层和承压含水层近似呈水平层状分布,潜水含水层从北侧补给,流向由北向南;整个观测期内潜水含水层水位下降且向下方承压含水层发生越流。在2021年4月24日至9月12日期间包气带含水量增加,承压含水层水量相对稳定,无明显变化。研究成果为该区域后续第四系和地下水研究工作打下基础,为该地区地下水的开发、管理和使用提供了重要参考,也为研究地下水动态过程提供了新思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李开富
马欢
张艳
李威龙
姜纪沂
黄斌
章龙管
秦孟博
关键词 时移电阻率法地下水时空分布特征北京平谷    
Abstract

The plain area in Pinggu is a major groundwater source for Beijing.To ascertain the spatio-temporal distribution of groundwater in the study area without damaging the strata,this study,using the non-intrusive time-lapse resistivity method,conducted the reciprocal measurements with Wenner and dipole-dipole arrays in Beiyangjiaqiao Village,Pinggu District.The least-squares inversion results of the profile observation data and normalized data show that:(1)the phreatic and confined aquifers in the study area are approximately horizontally stratified,with the phreatic aquifer being recharged from the north and flowing from north to south;(2)during the entire observation period,the phreatic aquifer showed a drop in water level and leakage into the confined aquifer below;(3)the water content in the aeration zone increased from April 24,2021 to September 12,2021.In contrast,the water content in the confined aquifer remained relatively stable in this period,without experiencing significant changes.The results of this study lay the foundation for the subsequent research on Quaternary strata and groundwater in the study area.Moreover,they can be used as an important reference for the development,management,and utilization of groundwater in the study area and provide a new philosophy for research on the dynamic process of groundwater.

Key wordstime-lapse resistivity method    groundwater    spatio-temporal distribution    Pinggu Beijing
收稿日期: 2022-10-14      修回日期: 2023-04-11      出版日期: 2023-08-20
ZTFLH:  P  
基金资助:中央高校基本科研业务费资助计划项目(ZY20180205);国家自然科学基金项目(41804119);河北省自然科学基金项目(D2019512016);廊坊市青年拔尖人才项目(XY202304)
通讯作者: 马欢(1988-),男,副教授,主要从事地球物理电法数值模拟算法及其应用研究工作。Email:xiongha@hotmail.com
作者简介: 李开富(1970-),男,高级工程师,主要从事地球物理勘探、机械设备研究与设计制造工作。Email:Likaifu@cresc.cn
引用本文:   
李开富, 马欢, 张艳, 李威龙, 姜纪沂, 黄斌, 章龙管, 秦孟博. 基于时移电阻率法的平谷局部地区地下水时空特征研究[J]. 物探与化探, 2023, 47(4): 1002-1009.
LI Kai-Fu, MA Huan, ZHANG Yan, LI Wei-Long, JIANG Ji-Yi, HUANG Bin, ZHANG Long-Guan, QIN Meng-Bo. Spatio-temporal distribution of groundwater in the local area of Pinggu,Beijing derived using the time-lapse resistivity method. Geophysical and Geochemical Exploration, 2023, 47(4): 1002-1009.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1515      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I4/1002
Fig.1  研究区监测井地层柱状图
Fig.2  理论动态模型及其时移电阻率反演结果对比
Fig.3  研究区地貌及测线布设
序号 观测时间 观测装置 观测方法 时移观
测时间
间隔/d
T1 2020-11-22 温纳 单次观测 -
T2 2021-04-24 温纳、偶极—偶极 互换原理2次观测 153
T3 2021-09-12 温纳、偶极—偶极 互换原理2次观测 141
Table 1  时移电阻率法观测方案
Fig.4  温纳装置时移数据反演结果
Fig.5  温纳装置时移归一化数据反演结果
Fig.6  偶极—偶极装置时移数据反演结果
Fig.7  偶极—偶极装置时移归一化数据(T3/T2)反演结果
[1] 徐海珍, 李国敏, 张寿全, 等. 北京市平谷盆地地下水三维数值模拟及管理应用[J]. 水文地质工程地质, 2011, 38(2):27-34.
[1] Xu H Z, Li G M, Zhang S Q, et al. Development of a 3-D numerical groundwater flow model of the Pinggu Basin and groundwater resources management[J]. Hydrogeology & Engineering Geology, 2011, 38(2):27-34.
[2] 姜体胜, 曲辞晓, 王明玉, 等. 北京平谷平原区浅层地下水化学特征及成因分析[J]. 干旱区资源与环境, 2017, 31(11):122-127.
[2] Jiang T S, Qu C X, Wang M Y, et al. Hydrochemical characteristics of shallow groundwater and the origin in the Pinggu Plain,Beijing[J]. Journal of Arid Land Resources and Environment, 2017, 31(11):122-127.
[3] 李文鹏, 郑跃军, 郝爱兵. 北京平原区地下水位预警初步研究[J]. 地学前缘, 2010, 17(6):166-173.
[3] Li W P, Zheng Y J, Hao A B. A preliminary study of groundwater level pre-warning in Beijing Plain[J]. Earth Science Frontiers, 2010, 17(6):166-173.
[4] 王丽亚, 刘久荣, 周涛, 等. 北京平原地下水可持续开采方案分析[J]. 水文地质工程地质, 2010, 37(1):9-17.
[4] Wang L Y, Liu J R, Zhou T, et al. Analysis of sustainable groundwater resources development scenarios in the Beijing Plain[J]. Hydrogeology & Engineering Geology, 2010, 37(1):9-17.
[5] Travelletti J, Sailhac P, Malet J P, et al. Hydrological response of weathered clay-shale slopes:water infiltration monitoring with time-lapse electrical resistivity tomography[J]. Hydrological Processes, 2012, 26(14):2106-2119.
doi: 10.1002/hyp.v26.14
[6] Xu D, Hu X Y, Shan C L, et al. Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography[J]. Applied Geophysics, 2016, 13(1):1-12.
doi: 10.1007/s11770-016-0543-3
[7] Chambers J E, Gunn D A, Wilkinson P B, et al. 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment[J]. Near Surface Geophysics, 2014, 12(1):61-72.
doi: 10.3997/1873-0604.2013002
[8] Xu S, Sirieix C, Riss J, et al. A clustering approach applied to time-lapse ERT interpretation—Case study of Lascaux cave[J]. Journal of Applied Geophysics, 2017, 144:115-124.
doi: 10.1016/j.jappgeo.2017.07.006
[9] Legaz A, Vandemeulebrouck J, Revil A, et al. A case study of resistivity and self-potential signatures of hydrothermal instabilities,Inferno Crater Lake,Waimangu,New Zealand[J]. Geophysical Research Letters, 2009, 36(12):L12306.
doi: 10.1029/2009GL037573
[10] Power C, Gerhard J I, Karaoulis M, et al. Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation[J]. Journal of Contaminant Hydrology, 2014, 162:27-46.
[11] Power C, Gerhard J I, Tsourlos P, et al. Improved time-lapse electrical resistivity tomography monitoring of dense non-aqueous phase liquids with surface-to-horizontal borehole arrays[J]. Journal of Applied Geophysics, 2015, 112:1-13.
doi: 10.1016/j.jappgeo.2014.10.022
[12] Tesfaldet Y T, Puttiwongrak A. Seasonal groundwater recharge characterization using time-lapse electrical resistivity tomography in the Thepkasattri watershed on Phuket Island,Thailand[J]. Hydro-logy, 2019, 6(2):36.
[13] Chang P Y, Puntu J M, Lin D J, et al. Using time-lapse resistivity imaging methods to quantitatively evaluate the potential of groundwater reservoirs[J]. Water, 2022, 14(3):420.
doi: 10.3390/w14030420
[14] Bai L G, Huo Z J, Zeng Z F, et al. Groundwater flow monitoring using time-lapse electrical resistivity and self potential data[J]. Journal of Applied Geophysics, 2021, 193,104411.
doi: 10.1016/j.jappgeo.2021.104411
[15] Meyerhoff S B, Maxwell R M, Revil A, et al. Characterization of groundwater and surface water mixing in a semiconfined karst aquifer using time-lapse electrical resistivity tomography[J]. Water Resources Research, 2014, 50(3):2566-2585.
doi: 10.1002/wrcr.v50.3
[16] Chambers J E, Meldrum P I, Wilkinson P B, et al. Spatial monitoring of groundwater drawdown and rebound associated with quarry dewatering using automated time-lapse electrical resistivity tomography and distribution guided clustering[J]. Engineering Geo-logy, 2015, 193:412-420.
[17] 邓泽政. 平谷盆地典型污染区地下水污染监测网优化[D]. 北京: 中国地质大学(北京), 2021.
[17] Deng Z Z. Optimization of groundwater pollution monitoring network in typical polluted areas in Pinggu basin[D]. Beijing: China University of Geosciences (Beijing), 2021.
[18] 王新娟, 韩旭, 许苗娟, 等. 环境同位素在北京平谷盆地山前侧向补给研究中的应用[J]. 地质评论, 2023, 69(1):266-274.
[18] Wang X J, Han X, Xu M J, et al. Application of environmental isotopes in the study of lateral recharge in front of Pinggu basin Beijing[J]. Geological Review, 2023, 69(1):266-274.
[19] 周怀斌. 三维密度反演算法在川西和三河—平谷地区的应用研究[D]. 廊坊: 防灾科技学院, 2022.
[19] Zhou H B. Application of 3D density inversion algorithm in western Sichuan and Sanhe-Pinggu region[D]. Langfang: Insitute of Disaster Prevention, 2022.
[20] 邓前辉, 王继军, 汤吉, 等. 三河—平谷8级大震区地壳上地幔电性结构特征研究[J]. 地震地质, 2001, 23(2):178-185.
[20] Deng Q H, Wang J J, Tang J, et al. Electrical structures of the crust and upper mantle in Sanhe-Pinggu M8 earthquake area,China[J]. Seismology and Geology, 2001, 23(2):178-185.
[21] 傅甜甜. EnKF方法在北京市平谷区地下水数值模拟中的应用研究[D]. 北京: 中国地质大学(北京), 2021.
[21] Fu T T. Study on application of EnKF method in groundwater numerical simulation in Pinggu district,Beijing[D]. Beijing: China University of Geosciences (Beijing), 2021.
[22] Daily W, Ramirez A, LaBrecque D, et al. Electrical resistivity tomography of vadose water movement[J]. Water Resources Research, 1992, 28(5):1429-1442.
doi: 10.1029/91WR03087
[23] Miller C R, Routh P S, Brosten T R, et al. Application of time-lapse ERT imaging to watershed characterization[J]. Geophysics, 2008, 73(3):G7-G17.
doi: 10.1190/1.2907156
[24] Daily W, Ramirez A, Binley A, et al. Electrical resistance tomography[J]. The Leading Edge, 2004, 23(5):438-442.
doi: 10.1190/1.1729225
[25] LaBrecque D J, Yang X J. Difference inversion of ERT data:a fast inversion method for 3-D in situ monitoring[J]. Journal of Environmental and Engineering Geophysics, 2001, 6(2):83-89.
doi: 10.4133/JEEG6.2.83
[26] Cassiani G, Bruno V, Villa A, et al. A saline trace test monitored via time-lapse surface electrical resistivity tomography[J]. Journal of Applied Geophysics, 2006, 59(3):244-259.
doi: 10.1016/j.jappgeo.2005.10.007
[27] 马欢, 张洪洋, 郭越, 等. 时移电阻率法归一化数据反演分辨电阻率结构微小变化[J]. 物探与化探, 2019, 43(6):1320-1325.
[27] Ma H, Zhang H Y, Guo Y, et al. The normalized data inversion of time-lapse resistivity method for resolving small resistivity changes[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1320-1325.
[28] Kim J H, Yi M J, Park S G, et al. 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model[J]. Journal of Applied Geophysics, 2009, 68(4):522-532.
doi: 10.1016/j.jappgeo.2009.03.002
[29] Hayley K, Pidlisecky A, Bentley L R. Simultaneous time-lapse electrical resistivity inversion[J]. Journal of Applied Geophysics, 2011, 75(2):401-411.
doi: 10.1016/j.jappgeo.2011.06.035
[30] Loke M H, Dahlin T. A comparison of the gauss-newton and quasi-newton methods in resistivity imaging inversion[J]. Journal of Applied Geophysics, 2002, 49(3):149-162.
doi: 10.1016/S0926-9851(01)00106-9
[31] LaBrecque D J, Miletto M, Daily W, et al. The effects of noise on Occam’s inversion of resistivity tomography data[J]. Geophysics, 1996, 61(2):538-548.
doi: 10.1190/1.1443980
[32] 阮百尧. 视电阻率对模型电阻率的偏导数矩阵计算方法[J]. 地质与勘探, 2001, 37(6):39-41.
[32] Ruan B Y. A generation method of the partial derivatives of the apparent resistivity with respect to the model resistivity parameter[J]. Geology and Prospecting, 2001, 37(6):39-41.
[1] 范海印, 宋蕊蕊, 于林松, 滕永波, 万方, 张秀文, 李圣玉, 赵闯. 鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价[J]. 物探与化探, 2023, 47(5): 1326-1335.
[2] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[3] 张志, 徐洪苗, 钱家忠, 谢杰, 陈皓龙, 朱紫祥. 综合物探方法在矿泉水勘查中的应用——以泾县榔桥地区为例[J]. 物探与化探, 2023, 47(3): 690-699.
[4] 王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
[5] 申月芳, 马晗宇, 杨耀栋, 曹阳. 武清凹陷浅层含氟地下水演化特点及成因分析[J]. 物探与化探, 2021, 45(2): 528-535.
[6] 邬健强, 赵茹玥, 甘伏平, 张伟, 刘永亮, 朱超强. 综合电法在岩溶山区地下水勘探中的应用——以湖南怀化长塘村为例[J]. 物探与化探, 2020, 44(1): 93-98.
[7] 黄国民, 李世平, 陶毅, 杨承丰, 曾庆仕. 广西碎屑岩地区电法找水实例[J]. 物探与化探, 2019, 43(1): 77-83.
[8] 张振杰, 胡潇, 谢慧. 直流电测深法优化组合在河西走廊山前戈壁区的找水效果[J]. 物探与化探, 2018, 42(6): 1186-1193.
[9] 杨天春, 梁竞, 程辉, 曹书锦, 董绍宇, 宫玉菲. 天然电场选频法的浅层地下水勘探效果与异常分析[J]. 物探与化探, 2018, 42(6): 1194-1200.
[10] 杨艳林, 邵长生, 靖晶. 系统聚类法在划分岩溶地下水化学类型中的应用[J]. 物探与化探, 2018, 42(4): 738-744.
[11] 谢志峰, 杜发, 甘斌. 利用EH-4双源电磁系统评价浅层地下水[J]. 物探与化探, 2018, 42(2): 253-258.
[12] 屈利军, 李波, 周佩. 综合物探方法在湘中贫水山区找水中的应用[J]. 物探与化探, 2017, 41(5): 835-839.
[13] 孙中任, 杨殿臣, 赵雪娟. 综合物探方法寻找深部地下水[J]. 物探与化探, 2017, 41(1): 52-57.
[14] 王书, 闫天龙. 地下水污染调查中探地雷达有限差分数值模拟[J]. 物探与化探, 2016, 40(5): 1051-1054.
[15] 王晓明, 崔伟, 聂栋刚. 地面核磁共振地下水探测技术在水库大坝渗漏勘查中的应用[J]. 物探与化探, 2015, 39(2): 432-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com