Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (6): 1528-1537    DOI: 10.11720/wtyht.2023.0051
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于三角和线性台阵的煤矿背景噪声成像技术适用性研究
张泽奇1,2, 高级3(), 刘梁4, 查华胜3, 张海江3
1.中煤华晋集团晋城能源有限公司 里必煤矿,山西 晋城 048200
2.中国矿业大学(北京) 能源与矿业学院,北京 100083
3.中国科学技术大学 地球和空间科学学院,安徽 合肥 230026
4.江西省地质局 第五地质大队,江西 新余 338000
Applicability of an imaging method for ambient noise in coal mines based on triangular and linear arrays
ZHANG Ze-Qi1,2, GAO Ji3(), LIU Liang4, ZHA Hua-Sheng3, ZHANG Hai-Jiang3
1. Libi Coal Mine, China Coal Huajin Group, Jincheng Energy Co., Ltd., Jincheng 048200, China
2. School of Energy and Mining Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China
3. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
4. The fifth Geological Brigade of Jiangxi Geological Bureau, Xinyu 338000, China
全文: PDF(8480 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

背景噪声面波成像在大尺度区域构造及浅层工程勘探中已得到广泛应用,但在几百米至1 km深度范围内探测研究相对较少。该探测深度利用的噪声源为几赫兹至十几赫兹的人文环境噪声,在时间空间上变化较大。为研究背景噪声成像技术在煤矿尺度探测中的适用性,本文以里必煤矿深部探测为例,通过实验数据系统分析了噪声源的分布特征及不同台阵频散成像的适应性。研究发现,矿区2 Hz以下噪声能量在晚上占主导,大于2 Hz噪声源能量在白天占主导;目标3号煤层埋深(700 m)利用的噪声频段(2~10 Hz)主要分布在东南方向;当噪声源能量和方位相对单一时,与噪声源方向一致的线性台阵可以获得比三角形台阵更好的频散数据。最后,通过提取NW向线性台阵的频散数据,获得了台阵下方的一维速度结构。与台阵附近ZK101钻孔岩性柱状图对比分析,得出利用背景噪声成像获得的速度结构与地下岩性具有较好的对应关系。说明在充分考虑噪声源分布的情况下,基于线性台阵的背景噪声成像可以获得煤矿尺度1 km以浅可靠的速度结构。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张泽奇
高级
刘梁
查华胜
张海江
关键词 背景噪声噪声源分布面波线性台阵煤矿结构探测    
Abstract

Ambient noise surface wave imaging has been widely applied in the engineering exploration of large-scale regional structures and shallow parts. However, there are limited studies on the exploration of mineral resources at depths ranging from several hundreds of meters to one kilometer. The noise source utilized for exploration at this depth range is human environmental noise with frequencies from a few Hz to over ten Hz, varying greatly in time and space. To examine the applicability of ambient noise imaging in the exploration of coal mines, this study systematically analyzed noise source distribution and the adaptability of various array dispersion imaging schemes using experimental data from the Libi Coal Mine. As revealed by the results, the noise in the coal mine is dominated by that with frequencies below 2Hz at night and by that above 2Hz during the day. The noise frequency band (2~10 Hz) utilized for the No. 3 coal seam at a depth of 700m is primarily distributed in the southeast. In the case of simple frequencies and azimuths of the noise sources, a linear array in the noise source direction can obtain dispersion data with higher quality than a triangular array. Finally, by extracting dispersion data from a linear array in the NW direction, the 1D velocity structure below the linear array was obtained. By comparison with the lithology column of borehole ZK101 near the linear array, the 1D velocity structure, obtained through ambient noise imaging, corresponded well with the underground lithology. This result indicates that when fully considering noise distribution, the ambient noise imaging based on a linear array can yield reliable velocity structures for layers at depths less than 1 km in a coal mine.

Key wordsambient noise    noise source distribution    surface wave    linear array    exploration of coal mine structure
收稿日期: 2023-02-15      修回日期: 2023-03-18      出版日期: 2023-12-20
:  P631  
基金资助:国家自然科学基金委国际(地区)合作与交流项目(41961134001)
通讯作者: 高级(1983-),男,副研究员,主要从事近地表综合地球物理成像研究工作。Email: gaoji617@ustc.edu.cn
作者简介: 张泽奇(1986-),男,工程师,研究方向为地测防治水。
引用本文:   
张泽奇, 高级, 刘梁, 查华胜, 张海江. 基于三角和线性台阵的煤矿背景噪声成像技术适用性研究[J]. 物探与化探, 2023, 47(6): 1528-1537.
ZHANG Ze-Qi, GAO Ji, LIU Liang, ZHA Hua-Sheng, ZHANG Hai-Jiang. Applicability of an imaging method for ambient noise in coal mines based on triangular and linear arrays. Geophysical and Geochemical Exploration, 2023, 47(6): 1528-1537.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.0051      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I6/1528
Fig.1  研究区(里必煤矿)位置
Fig.2  实验台阵节点地震仪分布
Fig.3  三角形台阵在不同频率下的台阵响应
Fig.4  不同频率下噪声源的能量分布
Fig.5  不同频率噪声源的传播速度及方位
Fig.6  不同台阵频散图
Fig.7  NW线性台阵不同采集时间的频散图
Fig.8  NW方向线阵频散数据反演结果
Fig.9  速度模型及对应的不同频率面波相速度深度敏感度分布
Fig.10  Z101钻孔柱状图及vs速度结构
[1] 张宪旭, 杨光明, 蔡文芮, 等. 煤层下部地层地震成像研究[J]. 煤田地质与勘探, 2015, 43(2):83-85.
[1] Zhang X X, Yang G M, Cai W R, et al. Research on seismic imaging of the lower part of coal seam[J]. Coal Geology & Exploration, 2015, 43(2),83-85.
[2] 程建远, 王千遥, 朱书阶. 煤矿采区高密度三维地震采集参数讨论[J]. 煤田地质与勘探, 2020, 48(6):25-32.
[2] Cheng J Y, Wang Q Y, Zhu S J. Discussion on parameters of high density 3D seismic exploration acquisition in coal mining districts[J]. Coal Geology & Exploration, 2020, 48(6):25-32.
[3] 蔡文芮. 基于三维地震和矿井槽波资料的工作面构造综合解释[J]. 陕西煤炭, 2022, 41(4):1-4.
[3] Cai W R. Comprehensive interpretation of working face structure based on 3D seismic and mine slot wave data[J]. Shaanxi Coal, 2022, 41(4):1-4.
[4] 薛国强, 李海, 陈卫营, 等. 煤矿含水体瞬变电磁探测技术研究进展[J]. 煤炭学报, 2021, 46 (1):77-85.
[4] Xue G Q, Li H, Chen W Y, et al. Research progress of transient electromagnetic detection technology for water-bearing bodies in coal mines[J]. Journal of China Coal Society, 2021, 46(1):77-85.
[5] 徐佩芬, 李传金, 凌甦群, 等. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报, 2009, 52(7):1923-1930.
[5] Xu P F, Li C J, Ling S Q, et al. Mapping collapsed columns in coal mines utilizing microtremor survey methods[J]. Chinese Journal of Geophysics, 2009, 52(7):1923-1930.
[6] 尹奇峰, 潘冬明, 于景邨, 等. 基于三维 RVSP 多孔联合技术煤矿采空区的探测[J]. 煤炭学报, 2014, 39(7):1338-1344.
[6] Yin Q F, Pan D M, Yu J C, et al. 3D RVSP multihole united exploration technology in coal mine goaf detection[J]. Journal of China Coal Society, 2014, 39(7):1338-1344.
[7] 孙林. 高密度电阻率法与浅层地震在探测煤田采空区中的应用[J]. 物探与化探, 2012, 36(S1):88-91.
[7] Sun L. The application of high density Resistivity method and shallow seismic technique to detecting Goaf in the coal mine[J]. Geophysical and Geochemical Exploration, 2012, 36(S1):88-91.
[8] 王强, 田野, 刘欢, 等. 综合物探方法在煤矿采空区探测中的应用[J]. 物探与化探, 2022, 46(2):531-536.
[8] Wang Q, Tian Y, Liu H, et al. Application of comprehensive geophysical prospecting in investigation of coal mine goaves[J]. Geophysical and Geochemical Exploration, 2022, 46(2):531-536.
[9] 武欣, 潘冬明, 于景邨. 煤矿采空区地球物理探测方法综述[J]. 地球物理学进展, 2022, 37(3):1197-1206.
[9] Wu X, Pan D M, Yu J C. Review in the geophysical methods for coalmine goaf prospecting[J]. Progress in Geophysics, 2022, 37(3):1197-1206.
[10] 夏江海, 高玲利, 潘雨迪, 等. 高频面波方法的若干新进展[J]. 地球物理学报, 2015, 58(8):2591-2605.
doi: 10.6038/cjg20150801
[10] Xia J H, Gao L L, Pan Y D, et al. New findings in high-frequency surface wave method[J]. Chinese Journal of Geophysics, 2015, 58(8):2591-2605.
[11] 赵玲云, 王伟涛, 王芳, 等. 噪声源的时空分布及其对噪声互相关函数的影响——以 ChinArray 二期数据为例[J]. 地球物理学报, 2021, 64(12):4327-4340.
doi: 10.6038/cjg2021O0054
[11] Zhao L Y, Wang W T, Wang F, et al. The distribution of noise source both in space and time and its influence on noise cross-correlation functions[J]. Chinese Journal of Geophysics, 2021, 64(12):4327-4340.
[12] Shapiro N M, Campillo M, Stehly L, et al. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 2005, 307(5715):1615-1618.
pmid: 15761151
[13] Yao H J, van Der Hilst R D, de Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis:I-Phase velocity maps[J]. Geophysical Journal International, 2006, 166(2):732-744.
doi: 10.1111/gji.2006.166.issue-2
[14] Luo Y H, Yang Y J, Xu Y X, et al. On the limitations of interstation distances in ambient noise tomography[J]. Geophysical Journal International, 2015, 201(2):652-661.
doi: 10.1093/gji/ggv043
[15] 徐义贤, 罗银河. 噪声地震学方法及其应用[J]. 地球物理学报, 2015, 58(8):2618-2636.
doi: 10.6038/cjg20150803
[15] Xu Y X, Luo Y H. Methods of ambient noise-based seismology and their applications[J]. Chinese Journal of Geophysics, 2015, 58(8):2618-2636.
[16] 李娜, 何正勤, 叶太兰, 等. 天然源面波勘探台阵对比试验[J]. 地震学报, 2015, 37(2):323-334.
[16] Li N, He Z Q, Ye T L, et al. Test for comparison of array layout in natural source surface wave exploration[J]. Acta Seismologica Sinica, 2015, 37(2):323-334.
[17] Liu Y, Xia J H, Cheng F, et al. Pseudo-linear-array analysis of passive surface waves based on beamforming[J]. Geophysical Journal International, 2020, 221(1):640-650.
doi: 10.1093/gji/ggaa024
[18] Ku T, Palanidoss S, Zhang Y H, et al. Practical configured microtremor array measurements (MAMs) for the geological investigation of underground space[J]. Underground Space, 2021, 6(3):240-251.
doi: 10.1016/j.undsp.2020.01.004
[19] Aki K. Space and time spectra of stationary stochastic waves,with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35:415-456.
[20] Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8):1408-1418.
doi: 10.1109/PROC.1969.7278
[21] Cheng F, Xia J H, Luo Y H, et al. Multichannel analysis of passive surface waves based on crosscorrelations[J]. Geophysics, 2016, 81(5):EN57-EN66.
[22] Wang J, Wu G, Chen X. Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(4):3708-3723.
doi: 10.1029/2018JB016595
[23] Xi C, Xia J H, Mi B, et al. Modified frequency-Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise[J]. Geophysical Journal International, 2021, 225(2):1271-1280.
doi: 10.1093/gji/ggab008
[24] Okada H, Suto K. The microtremor survey method[M].Society of Exploration Geophysicists, 2003.
[25] Hu J, Zhang H J, Yu H Y. Accurate determination of P-wave backazimuth and slowness parameters by sparsity-constrained seismic array analysis[J]. Geophysical Journal International, 2019, 216(1):1-18.
[26] 王奡, 罗银河, 吴树成, 等. 西准噶尔地区地震背景噪声源分析[J]. 地球物理学报, 2017, 60(4):1376-1388.
doi: 10.6038/cjg20170412
[26] Wang A, Luo Y H, Wu S C, et al. Source analysis of seismic ambient noise in the western Junggar area[J]. Chinese Journal of Geophysics, 2017, 60(4):1376-1388.
[27] Bensen G D, Ritzwoller M H, Barmin M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169(3):1239-1260.
doi: 10.1111/gji.2007.169.issue-3
[28] Foti S, Hollender F, Garofalo F, et al. Guidelines for the good practice of surface wave analysis:A product of the InterPACIFIC project[J]. Bulletin of Earthquake Engineering, 2018, 16(6):2367-2420.
doi: 10.1007/s10518-017-0206-7
[29] Herrmann R B. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismological Research Letters, 2013, 84(6):1081-1088.
doi: 10.1785/0220110096
[30] Brocher T M. Empirical relations between elastic wavespeeds and density in the Earth's crust[J]. Bulletin of the Seismological Society of America, 2005, 95(6):2081-2092.
doi: 10.1785/0120050077
[1] 张利振, 孙成禹, 王志农, 李世中, 焦峻峰, 颜廷容. 面波信息约束的初至波走时层析反演方法[J]. 物探与化探, 2023, 47(5): 1198-1205.
[2] 陈实, 金荣杰, 李延清, 李崇博, 胡尊平. 天然源面波技术在城市规划区场地评价中的应用[J]. 物探与化探, 2023, 47(1): 264-271.
[3] 邵广周, 李远林, 岳亮. 主动源与被动源面波联合勘探在黄土覆盖区三维成像中的应用[J]. 物探与化探, 2022, 46(4): 897-903.
[4] 吴为治, 娄利, 王鹏, 王宾. 基于Python语言的瑞利面波频散反演实行方案[J]. 物探与化探, 2022, 46(3): 743-749.
[5] 马国凯, 魏定勇, 刘爱友, 林万顺. 浅层地震技术在南水北调中线工程PCCP管道缺陷探测中的应用[J]. 物探与化探, 2022, 46(2): 525-530.
[6] 李巧灵, 张辉, 雷晓东, 李晨, 房浩, 关伟, 韩宇达, 赵旭辰. 综合利用多道瞬态面波和微动探测分析斜坡内部结构[J]. 物探与化探, 2022, 46(1): 258-267.
[7] 许艺煌, 黄真萍, 程志伟, 陈少博, 陈振明. 高密度电阻率法在弃渣堆积体分布调查中的应用[J]. 物探与化探, 2020, 44(2): 435-440.
[8] 刘现锋, 姜文龙, 王旭明, 马若龙, 胡文哲. 复杂地质条件下的面波探测技术应用研究[J]. 物探与化探, 2020, 44(2): 449-455.
[9] 唐文, 李江, 汪铁望. 黄土塬区多道瞬态面波数据采集试验分析[J]. 物探与化探, 2020, 44(1): 165-170.
[10] 杨飞龙, 俞岱, 孙渊. 基于压缩感知的复杂地表菲涅尔束偏移[J]. 物探与化探, 2019, 43(6): 1285-1290.
[11] 陈实, 李延清, 李同贺, 金荣杰, 张静. 天然源面波技术在乌鲁木齐城市地质调查中的应用[J]. 物探与化探, 2019, 43(6): 1389-1398.
[12] 王志农, 孙成禹, 伍敦仕. 基于最佳小波基的地震面波插值方法[J]. 物探与化探, 2019, 43(1): 189-198.
[13] 吴华, 李庆春, 邵广周. 瑞利波波形反演的发展现状及展望[J]. 物探与化探, 2018, 42(6): 1103-1111.
[14] 胡瑞卿, 王彦春, 岳占伟, 王奇. 小波域特征提取在浅层地震资料面波压制中的应用[J]. 物探与化探, 2018, 42(6): 1228-1236.
[15] 李万伦, 田黔宁, 刘素芳, 吕鹏, 姜重昕, 贾凌霄. 城市浅层地震勘探技术进展[J]. 物探与化探, 2018, 42(4): 653-661.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com