Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 700-706    DOI: 10.11720/wtyht.2023.1178
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
广域电磁法在巨厚低阻层下水文地质勘探中的应用——以安徽淮南某煤矿为例
齐朝华()
中国煤炭地质总局地球物理勘探研究院,河北 涿州 072750
Application of the wide-field electromagnetic method in hydrogeological exploration under the extremely-thick low-resistivity layer: A case study of a coal mine in the Huainan area, Anhui Province
Qi Zhao-Hua()
Research Institute of Coal Geophysical Exploration of China National Administrator of Coal Geology, Zhuozhou 072750, China
全文: PDF(4532 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为探测巨厚低阻层下部的煤层顶底板含水层中的富水性,在安徽淮南地区进行了煤矿广域电磁法的水文地质勘探工作,经过试验分析、数据采集、资料解释等多种手段获得的地质成果与井下揭露情况吻合良好。广域电磁法在煤矿水文地质勘探中的成功应用实例,表明该方法具有穿透能力强、探测深度大、精度高的特点,可以作为一种新兴的物探手段用于大深度煤田水文地质调查工作。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐朝华
关键词 广域电磁法煤矿富水性水文地质    
Abstract

To investigate the water yield properties of the aquifers in the hanging and foot walls of coal seams under the extremely-thick low-resistivity layer, this study conducted the hydrogeological exploration using the wide-field electromagnetic method (WFEM) targeting a coal mine in the Huainan area, Anhui Province. The geological results obtained through multiple means, such as test analysis and data acquisition and interpretation, agree well with the downhole conditions. As indicated by the successful WFEM application in the hydrogeological exploration of the coal mine, the WFEM features strong penetrability, large investigation depth, and high accuracy. Therefore, the WFEM can be used as a new geophysical exploration method for the hydrological survey of large-depth coal fields.

Key wordswide-field electromagnetic method    coal mine    water yield property    hydrogeololgy
收稿日期: 2022-04-13      修回日期: 2023-02-08      出版日期: 2023-06-20
ZTFLH:  P631.1  
基金资助:中国煤炭地质总局地球物理勘探研究院科研项目(JBGS-2022-02)
作者简介: 齐朝华(1984-),男,高级工程师,主要从事电磁法勘探及研究工作。Email:qizhaohua@126.com
引用本文:   
齐朝华. 广域电磁法在巨厚低阻层下水文地质勘探中的应用——以安徽淮南某煤矿为例[J]. 物探与化探, 2023, 47(3): 700-706.
Qi Zhao-Hua. Application of the wide-field electromagnetic method in hydrogeological exploration under the extremely-thick low-resistivity layer: A case study of a coal mine in the Huainan area, Anhui Province. Geophysical and Geochemical Exploration, 2023, 47(3): 700-706.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1178      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/700
地层 ρ
/(Ω·m)
ρ平均
/(Ω·m)
厚度/m
新生界(Q+N) 4~55 12 578
二叠系(P) 上石盒子组 9~537 15 63
下石盒子组 10~270 28 75
山西组 10~1345 39 92
石炭系(C) 10~8000 69 94
奥陶系(O) >69
Table 1  30-5孔测井电阻率统计
Fig.1  测线布置示意
Fig.2  不同收发距实验结果对比
Fig.3  不同接收极距(MN)实验结果
Fig.4  电阻率测井结果与广域电磁法测深结果对比
Fig.5  4100线广域电磁反演电阻率断面及地质剖面
Fig.6  研究区广域电磁法反演电阻率断面
Fig.7  1煤顺层电阻率切片与巷道掘进叠加图
[1] 梁维天, 孙新胜, 王东波, 等. 广域电磁法在河洼多金属矿勘查中的应用[J]. 物探与化探, 2020, 44(5):1048-1052.
[1] Liang W T, Sun X S, Wang D B, et al. The application of the wide field electromagnetic method in the exploration of the Hewa polymetallic ore deposit[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1048-1052.
[2] 田红军, 张光大, 刘光迪, 等. 黔北台隆区地热勘探中广域电磁法的应用效果[J]. 物探与化探, 2020, 44(5):1093-1097.
[2] Tian H J, Zhang G D, Liu G D, et al. The application effect of the wide field electromagnetic method in geothermal exploration of Tailong area,northern Guizhou Province[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 1093-1097.
[3] 詹少全, 丁梅花, 李爱勇, 等. 贵州碳酸盐岩山区广域电磁法勘探应用[J]. 物探与化探, 2020, 44(1):88-92.
[3] Zhan S Q, Ding M H, Li A Y, et al. The application of wide field electromagnetic sounding method to exploration in carbonatite mountain areas of Guizhou Province[J]. Geophysical and Geochemical Exploration, 2020, 44(1):88-92.
[4] 李帝铨, 汪振兴, 胡艳芳, 等. 广域电磁法在武陵山区页岩气勘探中的探索应用——以黔北桐梓地区为例[J]. 物探与化探, 2020, 44(5):991-998.
[4] Li D Q, Wang Z X, Hu Y F, et al. The application of wide field electromagnetic method to shale gas exploration in Wuling Mountain area: A case study of Tongzi area in northern Guizhou[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 991-998.
[5] 李帝铨, 肖教育. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5):1359-1366.
[5] Li D Q, Xiao J Y. Comparison of application effects of WFEM and CSAMT in water-rich area of Xinyuan Coal Mine[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1359-1366.
[6] 李秀锐. 广域电磁法勘探在顾桥煤矿的应用与实践[J]. 华东科技, 2014(4):371-372.
[6] Li X R. Application and practice of wide field electromagnetic method in Guqiao Coal Mine[J]. East China Science and technology: Academic Edition, 2014(4):371-372.
[7] 何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.
[7] He J S. Wide field electromagnetic and pseudo-random signal electrical method[M]. Beijing: Higher Education Press, 2010.
[8] 何继善. 广域电磁法测深研究[J]. 中南工业大学学报, 2010, 41(3):1065-1072.
[8] He J S. Wide field electromagnetic sounding methods[J]. Journal of Central South University, 2010, 41(3):1065-1072.
[9] 何继善. 可控源音频大地电磁[M]. 长沙: 中南工业大学出版社,1990.
[9] He J S. CSAMT[M]. Changsha: Central South University of Technology Press,1990.
[10] 汤井田. 可控源音频大地电磁法及其应用[M]. 长沙: 中南工业大学出版社, 2005.
[10] Tang J T. Controllable source audio frequency magnetotelluric method and its application[M]. Changsha: Central South Univer-sity of Technology Press, 2005.
[11] 胡菊艳, 郭鸿. 测井曲线在许疃井田煤岩层对比中的应用[J]. 中国煤炭地质, 2008, 20(12):18-19.
[11] Hu J Y, Guo H. Application of logging curve in coal strata correlation in Xutuan well field[J]. China Coal Geology, 2008, 20(12):18-19.
[12] 国家煤炭工业局. MT/T 898—2000 煤炭电法勘探规范[S]. 2000.
[12] State Administration of Coal Industry. MT/T 898—2000 General standard of electrical survey in coal[S]. 2000.
[13] 湖南省质量技术监督局. DB43/T 1460—2018 广域电磁法技术规程[S]. 2018.
[13] Bureau of Quality and Technical Supervision of Hunan Province. DB43/T 1460—2018 Technical specification for wide field electromagnetic method[S]. 2018.
[14] 于景邨, 刘志新, 岳建华. 煤矿深部开采中的地球物理技术现状及展望[J]. 地球物理学进展, 2007, 22(2):586-592.
[14] Yu J C, Liu Z X, Yue J H. Present situation and prospect of geophysical technology in deep coal mining[J]. Advances in Geophysics, 2007, 22(2):586-592.
[15] 罗国平, 张春燕, 李旭. 采空区含水性探测的综合电法勘探应用研究[J]. 中国煤炭地质, 2013, 25(1):44-47.
[15] Luo G P, Zhang C Y, Li X. Study on the application of comprehensive electrical method for water bearing detection in goaf[J]. China Coal Geology, 2013, 25(1):44-47.
[16] 宋尚伟. 谢桥矿多种物探综合探测水和瓦斯的应用[J]. 矿业科学技术, 2010, 38(4):45-49.
[16] Song S W. Application of multiple geophysical prospecting in comprehensive detection of water and gas in Xieqiao mine[J]. Mining Science and Technology, 2010, 38(4):45-49.
[17] 李强. 准南煤田物探方法在煤矿地质灾害勘查中的应用[J]. 地球, 2014, 1(8):136-136.
[17] Li Q. Application of geophysical prospecting method in Huainan coalfield in coal mine geological hazard exploration[J]. Earth, 2014, 1(8):136-136.
[1] 胡志方, 罗卫锋, 王胜建, 康海霞, 周惠, 张云枭, 詹少全. 广域电磁法在安页2井压裂监测应用探索[J]. 物探与化探, 2023, 47(3): 718-725.
[2] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[3] 王荣军, 周超群, 崔杰, 谢明星, 秦壮杰. 强干扰环境下铁矿导水通道精细探测研究[J]. 物探与化探, 2022, 46(6): 1396-1402.
[4] 李帝铨, 肖教育, 张继峰, 胡艳芳, 刘最亮, 张新. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5): 1359-1366.
[5] 赵旭辰, 李雪健, 曹芳智, 雷晓东, 李晨, 韩宇达. 井间电磁波CT在煤矿采空区探测效果分析[J]. 物探与化探, 2021, 45(4): 1088-1094.
[6] 朱云起, 李帝铨, 王金海. 基于MySQL的广域电磁法数据处理与解释软件[J]. 物探与化探, 2021, 45(4): 1030-1036.
[7] 何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5): 985-990.
[8] 李帝铨, 汪振兴, 胡艳芳, 王涵, 苏煜堤. 广域电磁法在武陵山区页岩气勘探中的探索应用——以黔北桐梓地区为例[J]. 物探与化探, 2020, 44(5): 991-998.
[9] 李麒麟, 李荣亮, 苏海伦, 刘洋, 曹自才. 甘肃临泽县城区深部地热资源调查评价[J]. 物探与化探, 2020, 44(5): 999-1008.
[10] 危志峰, 陈后扬, 吴西全. 广域电磁法在宜春某地地热勘查中的应用[J]. 物探与化探, 2020, 44(5): 1009-1018.
[11] 詹少全, 李爱勇, 王导丽, 郝红蕾, 王磊. 极寒环境中广域电磁法勘探技术研究[J]. 物探与化探, 2020, 44(5): 1019-1024.
[12] 田红军, 尹文斌, 刘光迪, 蒋永芳, 游文兵. 广域电磁法在低阻覆盖区的应用与评价——以河南中牟为例[J]. 物探与化探, 2020, 44(5): 1025-1030.
[13] 曾何胜, 徐元璋, 刘磊, 唐宝山, 张祎然, 李义, 陈宇峰. 广域电磁法在复杂电磁干扰环境的应用研究——以某市周边地热勘查为例[J]. 物探与化探, 2020, 44(5): 1031-1038.
[14] 王洪军, 熊玉新. 广域电磁法在胶西北金矿集中区深部探测中的应用研究[J]. 物探与化探, 2020, 44(5): 1039-1047.
[15] 梁维天, 孙新胜, 王东波, 冯家新, 孙文, 陈广镇. 广域电磁法在河洼多金属矿勘查中的应用[J]. 物探与化探, 2020, 44(5): 1048-1052.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com