Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (3): 684-689    DOI: 10.11720/wtyht.2024.1355
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
青藏高原及其周缘的各向异性研究
高玲霞(), 冯斌, 梁萌, 吴文鹂, 孙跃
中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
Anisotropic characteristics beneath Tibetan Plateau and its surrounding areas
GAO Ling-Xia(), FENG Bin, LIANG Meng, WU Wen-Li, SUN Yue
Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
全文: PDF(4965 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

本文利用中国国家台网在青藏地区布设的台站记录到的近5年震级在5.8以上、震中距在东经88°~120°之间的39个远震地震事件进行SKS横波分裂测量,来研究青藏高原及其周缘地区的各向异性及变形特征。在青藏内部地区,SKS横波分裂测量的快轴自西向东逐渐从NE—SW向转为E—W向,再转为NNE向,与GPS速度场方向基本一致,呈顺时针方向变化。造成此地区SKS分裂测量结果的原因可能为缅甸板块向东俯冲时发生向西的后撤运动,使得此区域的岩石圈产生环状变形。川滇地区南部的GPS数据显示了近ES向的地表形变且走滑断层走向为NW—SE向,Pms地壳各向异性快轴方向主要为S—N向或NNE—SSW向,SKS分裂结果揭示了E—W向的上地幔各向异性特征,与Pms快轴方向以大角度相交或垂直,说明云南地区深部软流圈地幔流动场与地壳及地表变形特征不一致,地幔和地壳的变形机制和各向异性来源不同,发生解耦变形。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高玲霞
冯斌
梁萌
吴文鹂
孙跃
关键词 青藏地区横波分裂各向异性壳幔变形板块运动    
Abstract

This study conducted SKS shear-wave splitting measurements of 39 distant earthquakes with magnitudes above 5.8 and epicentral distances between 88° and 120° recorded by the monitoring stations of China Earthquake Networks Center in the Qinghai-Tibet region in the past five years. Based on these measurements, this study investigated the anisotropic and deformation characteristics of Tibetan Plateau and its surrounding areas. Within the Qinghai-Tibet region, the fast axis of SKS shear-wave splitting measurements from west to east gradually shifted from NE-SW to E-W and then to NNW, roughly aligning with the direction of the GPS velocity field and changing in a clockwise direction. The reason for the measurement results in this region lies in that the westward retreating of the Burma plate during the eastward subduction may have caused circular deformation in the local lithosphere. The GPS data of the southern Sichuan-Yunnan region reveal nearly ES-directed surface deformation and NW-SE-trending strike-slip faults, with the fast-axis direction of the Pms wave for crustal anisotropy being S-N or NNE-SSW. The SKS splitting measurement results of this study reveal the E-W-directed anisotropy of the upper mantle, which intersects at a high angle with or is perpendicular to the fast-axis direction of the Pms wave. This suggests that the mantle flow field of the deep asthenosphere in Yunnan is inconsistent with the deformation characteristics of the crust and surface, and the mantle and crust show distinct deformation mechanisms and anisotropy sources, resulting in decoupling deformation.

Key wordsTibetan Plateau    shear-wave splitting    anisotropy    crust-mantle deformation    plate motion
收稿日期: 2023-08-22      修回日期: 2023-10-10      出版日期: 2024-06-20
ZTFLH:  P313  
  P315  
基金资助:中国地质调查局项目(DD20230712);中央级公益性科研院所基本科研业务费项目(AS2022P02)
作者简介: 高玲霞(1995-),女,硕士学位,毕业于中国科学技术大学,主要从事地震学研究工作。Email:gaolingxia@mail.cgs.gov.cn
引用本文:   
高玲霞, 冯斌, 梁萌, 吴文鹂, 孙跃. 青藏高原及其周缘的各向异性研究[J]. 物探与化探, 2024, 48(3): 684-689.
GAO Ling-Xia, FENG Bin, LIANG Meng, WU Wen-Li, SUN Yue. Anisotropic characteristics beneath Tibetan Plateau and its surrounding areas. Geophysical and Geochemical Exploration, 2024, 48(3): 684-689.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1355      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I3/684
Fig.1  常用于横波分裂测量的地震震相射线路径示意
Fig.2  地震事件与台站的位置
Fig.3  本文所用台站位置分布
Fig.4  利用旋转互相关方法获得的SKS横波未发生分裂的测量结果
Fig.5  利用旋转互相关方法获得的SKS横波分裂测量结果
Fig.6  青藏地区的SKS分裂测量结果
Fig.7  川滇地区的SKS分裂测量结果
(断裂分布引自文献[15-16],构造分区引自文献[17])
[1] Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547):1671-1677.
pmid: 11721044
[2] 王椿镛, 常利军, 丁志峰, 等. 中国大陆上地幔各向异性和壳幔变形模式[J]. 中国科学:地球科学, 2014, 44(1):98-110.
[2] Wang C Y, Chang L J, Ding Z F, et al. Upper Mantle Anisotropy and Crust-Mantle Deformation Model in Chinese mainland[J]. Scientia Sinica:Terrae, 2014, 44(1):98-110.
[3] 常利军, 丁志峰, 王椿镛. 南北构造带北段上地幔各向异性特征[J]. 地球物理学报, 2016, 59(11):4035-4047.
doi: 10.6038/cjg20161109
[3] Chang L J, Ding Z F, Wang C Y. Upper mantle anisotropy beneath the northern segment of the north-south tectonic belt in China[J]. Chinese Journal of Geophysics, 2016, 59(11):4035-4047.
[4] Li J, Wang X J, Niu F L. Seismic anisotropy and implications for mantle deformation beneath the NE margin of the Tibet Plateau and Ordos Plateau[J]. Physics of the Earth and Planetary Interiors, 2011, 189(3/4):157-170.
[5] Huang Z C, Tilmann F, Xu M J, et al. Insight into NE Tibetan Plateau expansion from crustal and upper mantle anisotropy revealed by shear-wave splitting[J]. Earth and Planetary Science Letters, 2017,478:66-75.
[6] 吕晋妤, 沈旭章, 金睿智, 等. 青藏高原东北缘地壳介质各向异性非均匀特征及其构造意义[J]. 地球物理学报, 2022, 65(6):1980-1990.
[6] Lyu J Y, Shen X Z, Jin R Z, et al. Laterally heterogeneous crustal anisotropy in the northeastern margin of Tibetan Plateau and its tectonic implications[J]. Chinese Journal of Geophysics, 2022, 65(6):1980-1990.
[7] 黄周传, 吉聪, 吴寒婷, 等. 青藏高原东南缘地壳结构与变形机制研究进展[J]. 地球与行星物理论评, 2021, 52(3):291-307.
[7] Huang Z C, Ji C, Wu H T, et al. Review on the crustal structures and deformations in the southeastern margin of the Tibetan Plateau[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(3):291-307.
[8] 李莹, 高原. 青藏高原东南缘地质构造基本形态与地震各向异性基本特征[J]. 地震, 2021, 41(4):15-45.
[8] Li Y, Gao Y. Basic characteristics of tectonics and seismic anisotropy in the southeastern margin of Tibetan Plateau[J]. Earthquake, 2021, 41(4):15-45.
[9] 郑秀芬, 欧阳飚, 张东宁, 等. “国家数字测震台网数据备份中心” 技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报, 2009, 52(5):1412-1417.
[9] Zheng X F, Ouyang B, Zhang D N, et al. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2009, 52(5):1412-1417.
[10] Lin Y P, Zhao L, Hung S H. Full-wave effects on shear wave splitting[J]. Geophysical Research Letters, 2014, 41(3):799-804.
[11] Wustefeld A, Bokelmann G. Null detection in shear-wave splitting measurements[J]. The Bulletin of the Seismological Society of America, 2007, 97(4):1204-1211.
[12] Fukao Y. Evidence from core-reflected shear waves for anisotropy in the Earth’s mantle[J]. Nature, 1984,309:695-698.
[13] Peng Z G, Ben-Zion Y. Systematic analysis of crustal anisotropy along the Karadere—Düzce branch of the North Anatolian fault[J]. Geophysical Journal International, 2004, 159(1):253-274.
[14] Zhao B, Huang Y, Zhang C H, et al. Crustal deformation on the Chinese mainland during 1998—2014 based on GPS data[J]. Geodesy and Geodynamics, 2015, 6(1):7-15.
[15] 邓起东. 中国活动构造图[M]. 北京: 地震出版社, 2007.
[15] Deng Q D. Map of active tectonics in China[M]. Beijing: Seismological Press, 2007.
[16] 屈春燕. 最新1/400万中国活动构造空间数据库的建立[J]. 地震地质, 2008, 30(1):298-304.
[16] Qu C Y. Building to the active tectonic database of China[J]. Seismology and Geology, 2008, 30(1):298-304.
[17] 邓起东, 张培震, 冉勇康, 等. 中国活动构造与地震活动[J]. 地学前缘, 2003, 10(S1):66-73.
[17] Deng Q D, Zhang P Z, Ran Y K, et al. Active tectonics and seismic activity in China[J]. Earth Science Frontiers, 2003, 10(S1):66-73.
[18] Chen Y, Zhang Z J, Sun C Q, et al. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions[J]. Gondwana Research, 2013, 24(3/4):946-957.
[19] 鲁来玉, 何正勤, 丁志峰, 等. 基于背景噪声研究云南地区面波速度非均匀性和方位各向异性[J]. 地球物理学报, 2014, 57(3):822-836.
[19] Lu L Y, He Z Q, Ding Z F, et al. Azimuth anisotropy and velocity heterogeneity of Yunnan area based on seismic ambient noise[J]. Chinese Journal of Geophysics, 2014, 57(3):822-836.
[20] Gao L X, Sun D Y. Seismic anisotropy beneath the Chinese Mainland:Constraints from shear wave splitting analyses[J]. Earthquake Research Advances, 2021,1:100034.
[21] Lev E, Long M, Vanderhilst R. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation[J]. Earth and Planetary Science Letters, 2006, 251(3/4):293-304.
[22] 高原, 石玉涛, 王琼. 青藏高原东南缘地震各向异性及其深部构造意义[J]. 地球物理学报, 2020, 63(3):802-816.
doi: 10.6038/cjg2020O0003
[22] Gao Y, Shi Y T, Wang Q. Seismic anisotropy in the southeastern margin of the Tibetan Plateau and its deep tectonic significances[J]. Chinese Journal of Geophysics, 2020, 63(3):802-816.
[1] 梁志强, 李弘. 不同方位各向异性反演技术对比和总结[J]. 物探与化探, 2024, 48(2): 443-450.
[2] 唐军, 刘沁园, 赖强, 吴煜宇, 许巍. 白云岩声电各向异性实验测量及分析[J]. 物探与化探, 2022, 46(6): 1492-1499.
[3] 谢锐, 阎建国, 陈琪. 叠前各向异性系数反演及在裂缝预测中的应用[J]. 物探与化探, 2022, 46(4): 968-976.
[4] 郭建磊. 轴向各向异性地层瞬变电磁三分量响应特征[J]. 物探与化探, 2022, 46(2): 362-372.
[5] 孙永壮, 李键, 秦德文, 刘庆文. 三维边缘保持滤波方法在海上地震数据噪声压制中的应用研究——以东海某凹陷为例[J]. 物探与化探, 2021, 45(3): 692-701.
[6] 欧居刚, 王小兰, 杨晓, 邓小江, 黄诚, 李文佳. 水平井地震导向技术探索与应用——以四川盆地复杂地区页岩气井为例[J]. 物探与化探, 2021, 45(3): 551-559.
[7] 陈志刚, 马文杰, 赵宏忠, 许凤, 崔全章, 马辉, 孙星. 利用曲率类属性预测储层裂缝的流程及应用实例[J]. 物探与化探, 2020, 44(5): 1201-1207.
[8] 周锦钟, 张金海, 牛全兵, 张惠瑜, 王海峰, 朱波, 李丽, 尹思, 王娜. 柴达木盆地尖顶山地区低频可控震源“两宽一高”地震资料处理关键技术应用研究[J]. 物探与化探, 2020, 44(2): 313-320.
[9] 王超, 宋维琪, 林彧涵, 张云银, 高秋菊, 魏欣伟. 基于叠前反演的地应力预测方法应用[J]. 物探与化探, 2020, 44(1): 141-148.
[10] 张红文, 刘喜恒, 周兴海, 李六五, 杜喜善, 王成泉. 全方位偏移成像技术在南马庄潜山构造带的应用[J]. 物探与化探, 2020, 44(1): 25-33.
[11] 唐杰, 李聪, 温雷, 戚瑞轩. 裂隙连通性对含流体介质剪切波分裂特征的影响[J]. 物探与化探, 2019, 43(4): 859-865.
[12] 李文成, 扶喆一. 焦石坝地区页岩各向异性及其影响的分析研究[J]. 物探与化探, 2019, 43(2): 266-272.
[13] 冯德山, 王向宇. 基于卷积完全匹配层的旋转交错网格高阶差分法模拟弹性波传播[J]. 物探与化探, 2018, 42(4): 766-776.
[14] 孙丽霞, 张智, 钱忠平, 王赟. 第85届SEG年会多分量地震亮点评述[J]. 物探与化探, 2018, 42(1): 75-86.
[15] 陆大进, 薛国强, 杜东旭, 马振军. 安微省典型矿集区岩石各向异性电性参数测试分析[J]. 物探与化探, 2017, 41(2): 333-340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com