Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (6): 1519-1527    DOI: 10.11720/wtyht.2023.1560
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于OMAGA-BP算法的高密度电阻率法反演研究
刘湘浩(), 刘四新(), 胡铭奇, 孙中秋, 王千
吉林大学 地球探测与科学技术学院,吉林 长春 130061
Research on inversion of high-density resistivity method based on OMAGA-BP algorithm
LIU Xiang-Hao(), LIU Si-Xin(), HU Ming-Qi, SUN Zhong-Qiu, WANG Qian
College of Geo-Exploration Sciences and Technology,Jilin University,Changchun 130061,China
全文: PDF(2754 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

高密度电阻率法由于其高效、直观的特点,在工程勘查中得到广泛应用。然而,由于反演问题的高度非线性,传统的反演方法在刻画异常体边界时存在一定的不精确性。为了实现高精度的高密度电法二维非线性反演成像,克服BP算法损失函数参数空间存在大量鞍点影响计算精度,及普通遗传算法存在早熟收敛、难以赋予BP网络最优的权值阈值的问题,本文提出基于最佳保留策略的自适应遗传算法(optimum maintaining adaptive genetic algorithm,简称OMAGA)优化的BP神经网络进行高密度电法二维反演成像方法。该方法对仿真模型数据及实测数据的反演计算都得到了较好的结果,表明该方法具有泛化能力强、反演计算精度高的优点。该研究对未来高密度电阻率法的精确反演有一定的指导作用,有助于提高地下目标的识别精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘湘浩
刘四新
胡铭奇
孙中秋
王千
关键词 基于最佳保留策略的自适应遗传算法BP神经网络高密度电阻率法反演精度    
Abstract

High-density resistivity method is widely used in engineering exploration because of its efficient and intuitive features. However, due to the high nonlinearity of the inversion problem, the traditional inversion method has some inaccuracy in describing the boundary of anomalous body. In order to achieve high precision two-dimensional nonlinear inversion imaging with high-density electrical method, to overcome the problem that a large number of saddle points in the parameter space of loss function of BP algorithm affect the calculation accuracy and that it is difficult to assign optimal weight threshold to BP network due to the precocious convergence of general genetic algorithm. In this paper,an Optimum Maintaining Adaptive Genetic Algorithm(OMAGA)is proposed to optimize the BP neural network for high density electrical two-dimensional inversion imaging. Good results have been obtained for the inversion calculation of simulation model data and measured data through this method, it shows that this method has strong generalization ability and high inversion accuracy. This study is helpful for the accurate inversion of high density resistivity method in the future,it is helpful to improve the accuracy of underground target identification.

Key wordsoptimum maintaining adaptive genetic algorithm    BP nerual network    high-density electrical method    inversion accuracy
收稿日期: 2022-11-22      修回日期: 2023-02-24      出版日期: 2023-12-20
:  P631  
基金资助:国家重点研发计划课题“石窟岩体裂隙渗流精细探测与多源数据处理解释系统研究”(2021YFC1523401)
通讯作者: 刘四新(1966-),男,教授,博士生导师,主要从事探地雷达、钻孔雷达及电磁波测井的方法理论研究工作。Email: liusixin@jlu.edu.cn
作者简介: 刘湘浩(2000-),男,博士生,主要研究方向为高密度电法数据的AI反演计算。Email:xianghao22@mails.jlu.edu.cn
引用本文:   
刘湘浩, 刘四新, 胡铭奇, 孙中秋, 王千. 基于OMAGA-BP算法的高密度电阻率法反演研究[J]. 物探与化探, 2023, 47(6): 1519-1527.
LIU Xiang-Hao, LIU Si-Xin, HU Ming-Qi, SUN Zhong-Qiu, WANG Qian. Research on inversion of high-density resistivity method based on OMAGA-BP algorithm. Geophysical and Geochemical Exploration, 2023, 47(6): 1519-1527.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1560      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I6/1519
Fig.1  三层BP神经网络结构示意
Fig.2  单神经元算式示意
Fig.3  二维OMAGA-BP高密度电法反演成像流程
Fig.4  部分电阻率模型样本示意
反演网络 训练集R 验证集R 测试集R 总体R
BP 0.96175 0.95273 0.93846 0.95814
GA-BP 0.97779 0.9529 0.94298 0.97095
OMAGA-BP 0.99403 0.97646 0.96735 0.98909
Table 1  模拟数据训练3种网络的性能比较
Fig.5  测试模型示意及不同反演方法成像结果
a—电阻率测试模型示意;b—电阻率模型最小二乘法反演结果;c—BP法反演结果;d—GA-BP法反演结果;e—OMAGA-BP法反演结果
Fig.6  防空洞及数据采集示意
Fig.7  4种反演方法对防空洞数据的反演结果
a—最小二乘法反演结果;b—BP法反演结果;c—GA-BP法反演结果;d—OMAGA-BP法反演结果
[1] 杨文采. 地球物理反演的理论与方法[M]. 北京: 地质出版社,1997.
[1] Yang W C. Theory and method of geophysical inversion[M]. Beijing: The Geological Publishing House,1997.
[2] 何继善. 电法勘探的发展和展望[J]. 地球物理学报, 1997, 40(S1):308-316.
[2] He J S. Development and prospect of electrical prospecting method[J]. Chinese Journal of Geophysics, 1997, 40(S1):308-316.
[3] 何门贵, 温永辉. 高密度电阻率法二维反演在工程勘探中的应用[J]. 物探与化探, 2002, 26(2):156-159.
[3] He M G, Wen Y H. The application of high density resistivity 2D inversion to engineering exploration[J]. Geophysical and Geochemical Exploration, 2002, 26(2):156-159.
[4] 吕惠进, 刘少华, 刘伯根. 高密度电阻率法在地面塌陷调查中的应用[J]. 地球物理学进展, 2005, 20(2):381-386.
[4] Lyu H J, Liu S H, Liu B G. Application of resistivity tomography survey method in detecting ground subsidence[J]. Progress in Geophysics, 2005, 20(2):381-386.
[5] Loke M H, Barker R D. Least-squares deconvolution of apparent resistivity pseudosections[J]. Geophysics, 1995, 60(6):1682-1690.
doi: 10.1190/1.1443900
[6] 徐海浪, 吴小平. 电阻率二维神经网络反演[J]. 地球物理学报, 2006, 49(2):584-589.
[6] Xu H L, Wu X P. 2-D resistivity inversion using the neural network method[J]. Chinese Journal of Geophysics, 2006, 49(2):584-589.
[7] Raiche A. A pattern recognition approach to geophysical inversion using neural nets[J]. Geophysical Journal International, 1991, 105(3):629-648.
doi: 10.1111/j.1365-246X.1991.tb00801.x
[8] Calderón-Macías C, Sen M K, Stoffa P L. Artificial neural networks for parameter estimation in geophysics[J]. Geophysical Prospecting, 2000, 48(1):21-47.
doi: 10.1046/j.1365-2478.2000.00171.x
[9] El-Qady G, Ushijima K. Inversion of DC resistivity data using neural networks[J]. Geophysical Prospecting, 2001, 49(4):417-430.
doi: 10.1046/j.1365-2478.2001.00267.x
[10] Stephen J, Manoj C, Singh S B. A direct inversion scheme for deep resistivity sounding data using artificial neural networks[J]. Journal of Earth System Science, 2004, 113(1):49-66.
doi: 10.1007/BF02701998
[11] Mann C J H. Geophysical applications of artificial neural networks and fuzzy logic[J]. Kybernetes, 2006, 35(3/4):599-600.
[12] Neyamadpour A, Taib S, Wan-Abdullah W A T W. Using artificial neural networks to invert 2D DC resistivity imaging data for high resistivity contrast regions: A MATLAB application[J]. Computers & Geosciences, 2009, 35(11):2268-2274.
doi: 10.1016/j.cageo.2009.04.004
[13] Neyamadpour A, Wan-Abdullah W A T, Taib S. Inversion of quasi-3D DC resistivity imaging data using artificial neural networks[J]. Journal of Earth System Science, 2010, 119(1): 27-40.
doi: 10.1007/s12040-009-0061-2
[14] Neyamadpour A, Wan-Abdullah W A T, Taib S, et al. 3D inversion of DC data using artificial neural networks[J]. Studia Geophysica et Geodaetica, 2010, 54(3):465-485.
doi: 10.1007/s11200-010-0027-5
[15] Maiti S, Gupta G, Erram V C,et.al. Inversion of Schlumberger resistivity sounding data from the critically dynamic Koyna region using the Hybrid Monte Carlo-based neural network approach[J]. Nonlinear Processes in Geophysics, 2011, 18(2):179-192.
doi: 10.5194/npg-18-179-2011
[16] 张凌云. 高密度电阻率勘探反演的非线性方法研究[D]. 太原: 太原理工大学, 2011.
[16] Zhang L Y. The study of nonlinear inversion method in high-density resistivity method inversion[D]. Taiyuan: Taiyuan University of Technology, 2011.
[17] 戴前伟, 江沸菠. 基于混沌振荡PSO-BP算法的电阻率层析成像非线性反演[J]. 中国有色金属学报, 2013, 23(10):2897-2904.
[17] Dai Q W, Jiang F B. Nonlinear inversion for electrical resistivity tomography based on chaotic oscillation PSO-BP algorithm[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(10):2897-2904.
[18] Dai Q W, Jiang F B, Dong L. Nonlinear inversion for electrical resistivity tomography based on chaotic DE-BP algorithm[J]. Journal of Central South University, 2014, 21(5):2018-2025.
doi: 10.1007/s11771-014-2151-9
[19] 高明亮, 于生宝, 郑建波, 等. 基于IGA算法的电阻率神经网络反演成像研究[J]. 地球物理学报, 2016, 59(11):4372-4382.
doi: 10.6038/cjg20161136
[19] Gao M L, Yu S B, Zheng J B, et al. Research of resistivity imaging using neural network based on immune genetic algorithm[J]. Chinese Journal of Geophysics, 2016, 59(11):4372-4382.
[20] Wu X X, Liu J G. A new early stopping algorithm for improving neural network generalization[C]// 2009 Second International Conference on Intelligent Computation Technology and Automation.Changsha,China,IEEE, 2009:15-18.
[21] Dauphin Y N, Pascanu R, Gulcehre C, et al. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014.
[22] 恽为民, 席裕庚. 遗传算法的全局收敛性和计算效率分析[J]. 控制理论与应用, 1996, 13(4): 455-460.
[22] Hun W M, Xi Y G. The analysis of global convergence and computational efficiency for genetic algorithm[J]. Control Theory & Applications, 1996, 13(4):455-460.
[23] Chen L, Gallet A, Huang S S, et al. Probabilistic cracking prediction via deep learned electrical tomography[J]. Structural Health Monitoring, 2022, 21(4): 1574-1589.
doi: 10.1177/14759217211037236
[24] Bishop C M. Training with noise is equivalent to tikhonov regularization[J]. Neural Computation, 1995, 7(1):108-116.
doi: 10.1162/neco.1995.7.1.108
[25] An Z. The effects of adding noise during backpropagation training on a generalization performance[J]. Neural Computation, 1996, 8(3):643-674.
doi: 10.1162/neco.1996.8.3.643
[1] 苏永军, 曹占宁, 赵更新, 胡祥云, 范剑, 张竞, 范翠松, 黄忠峰. 高密度电阻率法在雄安新区浅表古河道精细化探测中的应用研究[J]. 物探与化探, 2023, 47(1): 272-278.
[2] 陈超群, 戴慧敏, 冯雨林, 杨泽, 杨佳佳. 基于Sentinel-2A的孙吴地区土壤有机质反演研究[J]. 物探与化探, 2022, 46(5): 1141-1148.
[3] 孙建宏, 程立群, 赵伟锋, 任改娟, 孙冠石, 王瑞鹏, 裴明星. 海水入侵区视电阻率与氯离子浓度关系研究——以秦皇岛地区为例[J]. 物探与化探, 2022, 46(2): 518-524.
[4] 何胜, 马文鑫, 甘斌. 地面核磁共振法与高密度电阻率法在西藏盐湖卤水钾矿勘查中的应用[J]. 物探与化探, 2021, 45(6): 1409-1415.
[5] 王文杰, 郝一, 薄海军, 王海龙, 徐浩清, 李永利, 毛磊, 刘永新, 袁帅. 包头市固阳县矿集区高密度电阻率法找水定井实例分析[J]. 物探与化探, 2021, 45(4): 869-881.
[6] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[7] 杨利普, 徐志萍, 徐顺强, 刘明军, 姜磊, 熊伟, 贺为民. 薄壁断裂峪河口至方庄段电性结构特征[J]. 物探与化探, 2020, 44(6): 1301-1305.
[8] 许艺煌, 黄真萍, 程志伟, 陈少博, 陈振明. 高密度电阻率法在弃渣堆积体分布调查中的应用[J]. 物探与化探, 2020, 44(2): 435-440.
[9] 姚纪华, 罗仕军, 宋文杰, 刘媛, 赵文刚, 吕慧珠. 综合物探在水库渗漏探测中的应用[J]. 物探与化探, 2020, 44(2): 456-462.
[10] 邬健强, 赵茹玥, 甘伏平, 张伟, 刘永亮, 朱超强. 综合电法在岩溶山区地下水勘探中的应用——以湖南怀化长塘村为例[J]. 物探与化探, 2020, 44(1): 93-98.
[11] 刘道涵, 罗士新, 陈长敬. 高密度电阻率法在丹江口水源区尾矿坝监测中的应用[J]. 物探与化探, 2020, 44(1): 215-219.
[12] 孟凡松, 张刚, 陈梦君, 李怀良. 高密度电阻率法二维勘探数据的三维反演及其在岩溶探测中的应用[J]. 物探与化探, 2019, 43(3): 672-678.
[13] 付康伟, 张学强, 彭炎. BP神经网络算法在陆域天然气水合物成藏预测中的应用[J]. 物探与化探, 2019, 43(3): 486-493.
[14] 李富, 周洪福, 葛华. 不同类型滑坡体的高密度电阻率法勘察电性特征[J]. 物探与化探, 2019, 43(1): 215-221.
[15] 宫玉菲, 杨天春, 董邵宇, 蒋恺. 高密度电阻率法探测顶管注浆加固质量[J]. 物探与化探, 2018, 42(6): 1317-1320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com