Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (5): 1206-1214    DOI: 10.11720/wtyht.2023.1547
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于人工神经网络的瞬变电磁成像方法
游希然1(), 张继锋1,2,3(), 石宇1
1.长安大学 地质工程与测绘学院,陕西 西安 710054
2.海洋油气勘探国家工程研究中心,北京100028
3.长安大学 地球物理场多参数综合模拟实验室,陕西 西安 710054
Artificial neural network-based transient electromagnetic imaging
YOU Xi-Ran1(), ZHANG Ji-Feng1,2,3(), SHI Yu1
1. College of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China
2. National Engineering Research Center of Offshore Oil and Gas Exploration, Beijing 100028, China
3. Integrated Geophysical Simulation Laboratory, Chang’an University, Xi’an 710054, China
全文: PDF(4517 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

瞬变电磁法(transient electromagnetic method,TEM)目前常用的解释方法是采用全区视电阻率参数,其涉及的公式复杂,迭代过程繁琐耗时。本文分析TEM数据特征,引入人工神经网络(ANN),实现了瞬变电磁拟电阻率成像。设计多隐层BP神经网络,利用瞬变电磁解析方法计算出响应幅值,作为拟电阻率的映射参数参与网络训练,再使用训练集外的新数据来测试训练后的网络。构建了均匀半空间、一维层状模型,验证神经网络的正确性和适应性,对三维地电模型进行了成像。结果表明:神经网络计算的拟电阻率能够反映出地电模型的目标体异常,网络成像结果准确度较高。最后,利用神经网络算法处理实测数据,进一步说明神经网络成像可以作为资料解释的依据。该研究证明了人工神经网络在瞬变电磁成像上的可行性,为瞬变电磁成像提供了一种新的思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
游希然
张继锋
石宇
关键词 瞬变电磁成像人工神经网络拟电阻率    
Abstract

The transient electromagnetic method (TEM) commonly uses the all-time apparent resistivity parameter for interpretation, which involves complex formulas and time-consuming iterative processes. Based on the characteristics of TEM data, this study employed the artificial neural network (ANN) for TEM pseudo-resistivity imaging. First, this study designed a multi-hidden-layer BP neural network and calculated a response amplitude through TEM analysis. The response amplitude, as the mapping parameter of pseudo resistivity, was used for network training. Then new data outside the training set were used to test the trained network. A homogeneous half-space and one-dimensional layered model was built to verify the correctness and adaptability of the neural network. The imaging of the three-dimensional geoelectric model was performed. As revealed by the results, the pseudo resistivity calculated based on the neural network can reflect the target anomalies of the geoelectric model, with highly accurate network imaging results. Finally, the measured data were processed using the neural network algorithm, further indicating that the neural network-based imaging can serve as a basis for data interpretation. This study verified the feasibility of the ANN in TEM imaging, thus providing a new approach for TEM imaging.

Key wordsTEM imaging    artificial neural network    pseudo resistivity
收稿日期: 2022-11-08      修回日期: 2023-03-02      出版日期: 2023-10-20
ZTFLH:  P631  
基金资助:国家自然科学基金(42174168);陕西自然科学基金(2021JM-159);长安大学中央高校基本科研业务费专项资金(300102262201)
通讯作者: 张继锋
作者简介: 游希然(1999-),男,硕士研究生,主要从事地球物理瞬变电磁法反演研究工作。Email:chdyxr@163.com
引用本文:   
游希然, 张继锋, 石宇. 基于人工神经网络的瞬变电磁成像方法[J]. 物探与化探, 2023, 47(5): 1206-1214.
YOU Xi-Ran, ZHANG Ji-Feng, SHI Yu. Artificial neural network-based transient electromagnetic imaging. Geophysical and Geochemical Exploration, 2023, 47(5): 1206-1214.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1547      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I5/1206
发射电
流/A
发射半
径/m
采样时
间/s
电阻率范
围/(Ω·m)
时间道数
20 1.8 10-6~10-1 1~1000 101
Table 1  训练数据参数
Fig.1  三层BP神经网络结构
Fig.2  瞬变电磁拟电阻率成像神经网络结构
Fig.3  不同参数的均匀半空间模型计算结果
模型 ρ/(Ω·m) 平均相对
误差E/%
拟合优
R
时间道数
a 10 2.15 0.9997 40
b 100 1.90 0.9998 40
c 1000 1.97 0.9998 40
Table 2  半空间模型衡量指标
模型 层厚/m ρ/(Ω·m) 模型 层厚/m ρ/(Ω·m)
G型 50
Inf
10
100
D型 50
Inf
100
10
Table 3  二层模型参数
Fig.4  二层模型计算结果
模型 ρ/(Ω·m) 平均相对
误差E/%
拟合优
R
时间道数
G型 10-100 10.79 0.9734 101
D型 100-10 7.30 0.9923 101
Table 4  二层模型衡量指标
模型 层厚/m ρ/(Ω·m) 模型 层厚/m ρ/(Ω·m)
H型 50
100
Inf
100
10
100
K型 50
100
Inf
10
100
10
模型 层厚/m ρ/(Ω·m) 模型 层厚/m ρ/(Ω·m)
A型 50
100
Inf
10
100
500
Q型 50
100
Inf
500
100
10
Table 5  三层模型参数
模型 ρ/(Ω·m) 平均相
对误差E/%
拟合优
R
时间道数
H型 100-10-100 20.18 0.9790 101
K型 10-100-10 17.22 0.9488 101
A型 10-100-500 25.78 0.8054 101
Q型 500-100-10 20.21 0.9764 101
Table 6  三层模型衡量指标
Fig.5  三层模型计算结果
Fig.6  三维模型示意
Fig.7  三维模型计算结果
Fig.8  测线位置
Fig.9  实测数据计算结果
Fig.10  去除背景值后的剖面
[1] 牛之琏. 时间域电磁法原理[M]. 长沙: 中南工业大学出版社, 1992.
[1] Niu Z L. Principle of time domain electromagnetic method[M]. Changsha: Central South Polytechnic University Press, 1992.
[2] 吕国印. 瞬变电磁法的现状与发展趋势[J]. 物探化探计算技术, 2007, 10(S1):111-115,10.
[2] Lyu G Y. Current status and development trend of transient EM method[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2007, 10(S1):111-115,10.
[3] Fullagar P K. Generation of conductivity-depth pseudo-sections from coincident loop and in-Loop TEM data[J]. Australian Society of Exploration Geophysicists (ASEG), 1989, 20(1/2): 43-45.
[4] 陈本池, 牟永光, 孙吉定. 瞬变电磁法资料的快速反演成像技术与软件[J]. 物探与化探, 2000, 24(5):377-382,386.
[4] Chen B C, Mou Y G, Sun J D. Fast inversing imaging technique and softwares for data of transient electromagnetic method[J]. Geophysical and Geochemical Exploration, 2000, 24(5):377-382,386.
[5] Fullagar P K, Reid J E. Emax conductivity-depth transformation of airborne TEM data[J]. ASEG Extended Abstracts, 2001(1): 1-4.
[6] 严良俊, 徐世浙, 胡文宝, 等. 中心回线瞬变电磁测深法快速电阻率成像方法及应用[J]. 煤田地质与勘探, 2002, 30(6): 58-61.
[6] Yan L J, Xu S Z, Hu W B, et al. A rapid resistivity imaging method for central loop transient electromagnetic sounding and its application[J]. Coal Geology & Exploration, 2002, 30(6): 58-61.
[7] 郭文波, 李貅, 薛国强, 等. 瞬变电磁快速成像解释系统研究[J]. 地球物理学报, 2005, 48(6): 187-192.
[7] Guo W B, Li X, Xue G Q, et al. A study of the interpretation system for TEM tomography[J]. Chinese Journal of Geophysics, 2005, 48(6): 187-192.
[8] Nekut A G. Direct inversion of time-domain electromagnetic data[J]. Society of Exploration Geophysicists, 2012, 52(10): 1431-1435.
[9] 陈小红, 段奶军. 时间域航空电磁快速成像研究[J]. 地球物理学进展, 2012, 27(5): 2123-2127.
[9] Chen X H, Duan N J. Study on fast imaging of airborne time-domain electromagnetic data[J]. Progress in Geophysics, 2012, 27(5): 2123-2127.
[10] 樊亚楠, 李貅, 戚志鹏, 等. 瞬变电磁虚拟波场Born近似算法研究[J]. 地球物理学进展, 2019, 34(2): 529-536.
[10] Fan Y N, Li X, Qi Z P, et al. Study on Born approximation algorithm of TEM pseudo wave-field[J]. Progress in Geophysics, 2019, 34(2): 529-536.
[11] Spichak V, Fukuoka K, Kobayashi T, et al. ANN reconstruction of geoelectrical parameters of the Minou fault zone by scalar CSAMT data[J]. Journal of Applied Geophysics, 2002, 49(1): 75-90.
doi: 10.1016/S0926-9851(01)00100-8
[12] Singh U K, Tiwari R K, Singh S B. One-dimensional inversion of geo-electrical resistivity sounding data using artificial neural networks—A case study[J]. Computers and Geosciences, 2005, 31(1):99-108.
doi: 10.1016/j.cageo.2004.09.014
[13] 谢林涛. 瞬变电磁快速成像方法的研究[D]. 重庆: 重庆大学, 2009.
[13] Xie L T. Research on fast inversing imaging method for transient electromagnetic method[D]. Chongqing: Chongqing University, 2009.
[14] 朱凯光, 马铭遥, 车宏伟, 等. 基于主成分的时间域航空电磁数据神经网络反演仿真研究[J]. Applied Geophysics, 2012, 9(1):1-8,114.
doi: 10.1007/s11770-012-0307-7
[14] Zhu K G, Ma M Y, Che H W, et al. PC-based artificial neural network inversion for airborne time-domain electromagnetic data[J]. Applied Geophysics, 2012, 9(1):1-8,114.
doi: 10.1007/s11770-012-0307-7
[15] 李栋. 基于人工神经网络的航空瞬变电磁拟电阻率成像方法研究[D]. 西安: 长安大学, 2019.
[15] Li D. Study on airborne transient electromagnetic quasi-resistivity imaging method based on artificial neural network[D]. Xi’an: Chang’an University, 2019.
[16] Noh K, Yoon D, Byun J. Imaging subsurface resistivity structure from airborne electromagnetic induction data using deep neural network[J]. Exploration Geophysics, 2020, 51 (2),214-220.
doi: 10.1080/08123985.2019.1668240
[17] 吴国培, 张莹莹, 张博文, 等. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3):750-757.
[17] Wu G P, Zhang Y Y, Zhang B W, et al. The calculation of full-region apparent resistivity of central loop TEM based on deep learning[J]. Geophysical and Geochemical Exploration, 2021, 45(3):750-757.
[18] 白旸. 基于小波神经网络的航空瞬变电磁成像方法研究[D]. 西安: 长安大学, 2021.
[18] Bai Y. Study on airborne transient electromagnetic imaging method based on wavelet artificial neural network[D]. Xi’an: Chang’an University, 2021.
[19] 万永革, 李鸿吉. 人工神经网络在地球物理中的应用综述[J]. 国际地震动态, 1995(1):9-14.
[19] Wan Y G, Li H J. An overview of the application of artificial neural network in geophysics[J]. Recent Developments in World Seismology, 1995(1):9-14.
[20] 杨振峰, 田仁飞, 肖学, 等. 拟电阻率重构在岩性油藏油层识别中的应用[J]. 科学技术与工程, 2014, 14(7):117-120.
[20] Yang Z F, Tian R F, Xiao X, et al. The application pseudo-resistivity reconstruction to identify oil layers in lithologic reservoir[J]. Science Technology and Engineering, 2014, 14(7):117-120.
[1] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[2] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[3] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
[4] 孙致学, 孙治雷, 郭春华. 遗传神经网络测井解释技术在宝北区块的应用初探[J]. 物探与化探, 2004, 28(5): 457-459.
[5] 贺铎华. BP神经网络识别塔北低阻油气层[J]. 物探与化探, 2002, 26(2): 122-125.
[6] 高美娟, 田景文, 张淑华. 利用人工神经网络方法检测地震剖面同相轴[J]. 物探与化探, 2000, 24(5): 353-357.
[7] 陈遵德, 王玲. 地球化学样品分类的RS方法[J]. 物探与化探, 1998, 22(5): 348-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com