Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (4): 1018-1023    DOI: 10.11720/wtyht.2023.1481
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于复电阻率—核磁联测实验的三水模型新形式
张丽华(), 潘保芝, 单刚义(), 阿茹罕, 张鹏济
吉林大学 地球探测科学与技术学院,吉林 长春 130026
A new three-water model based on the complex resistivity-NMR joint survey experiment
ZHANG Li-Hua(), PAN Bao-Zhi, SHAN Gang-Yi(), A Ru-Han, ZHANG Peng-Ji
College of Geoexploration Science and Technology,Jilin University,Changchun 130026,China
全文: PDF(677 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

三水模型在碎屑岩储集层解释中的应用比较广泛,但是三水模型的参数较多,部分参数很难确定,且确定方法多数都是根据研究地区很多实验数据统计而定。为了解决三水模型应用中的多参数问题,本文提出基于复电阻率数据计算阳离子交换容量的新方法,在此基础上提出了三水模型的新形式,并且提出了核磁数据结合遗传最优化算法,确定三水模型的参数值。根据这些参数计算的岩样100%含水时的电阻率与实验测量得到的电阻率相对误差为0.341 7。本文提出的方法简单易用,不需要依赖太多的实验数据,只要有复电阻率和核磁实验数据就可以应用。该方法可以为其他地区确定新三水模型参数提供参考和借鉴。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张丽华
潘保芝
单刚义
阿茹罕
张鹏济
关键词 三水模型三水模型参数复电阻率阳离子交换容量最优化算法核磁    
Abstract

Three-water(free water,microcapillary water,and clay water) models are widely used in the interpretation of clastic reservoirs.However,these models involve many parameters,some of which are difficult to determine.The methods for determining these parameters are mostly based on the statistics of a large amount of experimental data in study areas.To solve the multi-parameter problem in the application of three-water models,this study proposed a new method to calculate the cation exchange capacity based on the complex resistivity data.Accordingly,it built a new three-water model.Then,it determined the parameter values of the three-water model using nuclear magnetic resonance (NMR) data combined with the optimal genetic algorithm.The resistivity of the completely water-saturated rock samples calculated from these parameters had a relative error of 0.3417 compared to the resistivity obtained from experimental measurements.The method proposed in this study is simple and easy to use.Moreover,this method does not rely on too many experimental data but requires only complex resistivity and NMR experimental data.Therefore,this method can be used as a reference for determining the parameters of new three-water models of other areas.

Key wordsthree-water model    three-water model parameters    complex resistivity    cation exchange capacity    optimization algorithm    NMR
收稿日期: 2022-09-21      修回日期: 2023-05-29      出版日期: 2023-08-20
ZTFLH:  P631  
基金资助:国家自然科学基金面上项目(42072323)
通讯作者: 单刚义(1970-),男,博士,高级工程师,现从事地震数据处理与解释研究工作。Email:shangangyi@jlu.edu.cn
作者简介: 张丽华(1974-),女,博士,正高级工程师,现从事石油地球物理测井的处理与解释研究工作。Email:zhanglh@jlu.edu.cn
引用本文:   
张丽华, 潘保芝, 单刚义, 阿茹罕, 张鹏济. 基于复电阻率—核磁联测实验的三水模型新形式[J]. 物探与化探, 2023, 47(4): 1018-1023.
ZHANG Li-Hua, PAN Bao-Zhi, SHAN Gang-Yi, A Ru-Han, ZHANG Peng-Ji. A new three-water model based on the complex resistivity-NMR joint survey experiment. Geophysical and Geochemical Exploration, 2023, 47(4): 1018-1023.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1481      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I4/1018
Fig.1  三水模型示意
Fig.2  T2谱上3种水的分布示意
Fig.3  遗传算法基本流程
Fig.4  QHD油田X井6个参数最优化结果与实测R0对比
Fig.5  QHD油田X井4个参数最优化结果与实测R0对比
Fig.6  I-Sw关系
[1] 李舟波. 地球物理测井数据处理与综合解释[M]. 长春: 吉林大学出版社, 2003.
[1] Li Z B. Geophysical logging data processing and comprehensive interpretation[M]. Changchun: Jilin University Press, 2003.
[2] 曾文冲. 油气藏储集层测井评价技术[M]. 北京: 石油工业出版社, 1991.
[2] Zeng W C. Logging evaluation technology of oil and gas reservoir[M]. Beijing: Petroleum Industry Press, 1991.
[3] Poupon A, Leveaux J. Evaluation of water saturations in shaly formation[J]. The Log Analyst, 1971, XII(4): 3-8.
[4] Simandoux P. Dielectric measurements on porous media: Application to measurement of water saturation: Study of the behavior of argillacious formation[C]// SPWLA 4th Annual Logging Symposium, 1963.
[5] Waxman M H, Smits L J M. Electrical conductivities in oil bearing shaly sands[C]// SPE, 1968: 107-122.
[6] Clavier C, Coates G, Dumanoir J. The theoretical and experimental bases for the electric dual-water model for interpretation of shaly sands[J]. SPE Journal, 1984, 24(2): 153-168.
[7] Givens W W. A conductive rock matric model (CRMM) for the analysis of low-contrast resistivity formation[J]. The Log Analyst, 1987, 28(2) :138-151.
[8] Crane S D. Impacts of micro porosity, rough pore surface and conductive minerals on saturation calculations from electric measurements: An ex tended Archie's law[C]// West Lafayette:SPWLA 31th Annual Logging Symposium, 1990.
[9] 莫修文. 低阻储层导电模型的建立及解释方法研究[D]. 长春: 长春科技大学, 1998.
[9] Mo X W. Study on the establishment and interpretation of conductivity model of low resistivity reservoir[D]. Changchun: Changchun University of Science and Technology, 1998.
[10] 莫修文, 贺铎华, 李舟波, 等. 三水导电模型及其在低阻储层解释中的应用[J]. 长春科技大学学报, 2001(1):92-95.
[10] Mo X W, He D H, Li Z B, et al. The application of three-water conduction model in the interpretation of low-resistivity reservoir[J]. Journal of Changchun University of Science and Technology, 2001(1):92-95.
[11] 张奉东, 潘保芝. 三水模型在腰英台油田储层测井解释中的应用[J]. 世界地质, 2009, 28(2):226-232.
[11] Zhang F D, Pan B Z. Application of three water model in reservoir log interpretation inYaoyingtai oilfield[J]. World Geology, 2009, 28(2):226-232.
[12] 张丽华, 潘保芝, 李宁, 等. 基于三水模型的储层分类方法评价低孔隙度低渗透率储层[J]. 测井技术, 2011, 35(1):31-35.
[12] Zhang L H, Pan B Z, Li N, et al. Reservoir Classification Method Based on Three Water Model to Evaluate Low Porosity and Low Permeability Reservoir[J]. Well Logging Technology, 2011, 35(1):31-35.
[13] 郭宇航, 潘保芝, 蒋必辞, 等. 苏里格地区三水模型与数学方法结合的致密砂岩储层评价[J]. 石油物探, 2015, 54(5):621-626.
doi: 10.3969/j.issn.1000-1441.2015.05.015
[13] Guo Y H, Pan B Z, Jiang B C, et al. Tight sandstone reservoir evaluation by the combination of three-water model and mathematical method in Sulige Area[J]. Geophysical Prospecting for Petroleum, 2015, 54(5):621-626.
doi: 10.3969/j.issn.1000-1441.2015.05.015
[14] 丁永浩. 泥质砂岩三孔隙导电模型测井解释方法研究[D]. 长春: 吉林大学, 2005.
[14] Ding Y H. Study on shaly sand three-pore conductivity model log interpretation method[D]. Changchun: Jilin Univesity, 2005.
[15] 付晨东, 汪爱云. 新三水模型的改进与参数确定方法[J]. 吉林大学学报:地球科学版, 2022, 52(2):654-661.
[15] Fu C D, Wang A Y. Improvement of new three-water model and determination of its parameters[J]. Journal of Jilin University:Earth Science Edition, 2022, 52 (2):654-661.
[16] 张丽华, 潘保芝, 李舟波, 等. 新三水导电模型及其在低孔低渗储层评价中的应用[J]. 石油地球物理勘探, 2010, 45(3):431-435,472,318.
[16] Zhang L H, Pan B Z, Li Z B, et al. New three-water conduction model and its application in evaluation of low porosity and low permeability reservoir[J]. OGP, 2010, 45(3):431-435,472,318.
[17] 王赞惟. 鄂尔多斯盆地东缘临兴地区盒 8段储层微观孔隙结构及渗流特征[J]. 非常规油气, 2020, 7(1):59-64.
[17] Wang Z W. Microscopic pore structure and the seepage characteristics in tight sandstone reservoir of the 8th member of lower shihezi formation in Linxing area of east Ordos Basin[J]. Unconventional Oil & Gas, 2020, 7(1): 59-64.
[18] 李楚雄, 申宝剑, 卢龙飞, 等. 松辽盆地沙河子组页岩孔隙结构表征—基于低场核磁共振技术[J]. 油气藏评价与开发, 2022, 12(3):468-476.
[18] Li C X, Shen B J, Lu L F, et al. Pore structure characterization of Shahezi Formation shale in Songliao Basin: Based on low-field nuclear magnetic resonance technology[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 468-476.
[19] 谭茂金, 赵文杰. 用核磁共振测井资料评价碳酸盐岩等复杂岩性储集层[J]. 地球物理学进展, 2006, 21(2):489-493.
[19] Tan M J, Zhao W J. Description of carbonate reservoirs with NMR log analysis method[J]. Progress in Geophysics, 2006, 21(2): 489-493.
[20] 白松涛, 程道解, 万金彬, 等. 砂岩岩石核磁共振 T2谱定量表征[J]. 石油学报, 2016, 37(3):382-391.
doi: 10.7623/syxb201603010
[20] Bai S T, Cheng D J, Wan J B, et al. Quantitative characterization of sandstone NMR T2 spectrum[J]. Acta Petrolei Sinica, 2016, 37(3): 382-391.
[21] 梁志凯, 李卓, 姜振学, 等. 基于 NMR 和 SEM 技术研究陆相页岩孔隙结构与分形维数特征—以松辽盆地长岭断陷沙河子组页岩为例[J]. 地球科学与环境学报, 2020, 42(3):313-328.
[21] Liang Z K, Li Z, Jiang Z X, et al. Characteristics of pore structure and fractal dimension in continental shale based on NMR experiment and SEM image analyses: A case study of Shahezi Formation Shale in Changling Fault Depression of Songliao Basin, China[J]. Journal of Earth Sciences and Environment, 2020, 42(3): 313-328
[22] 朱文森. 秦皇岛32-6和绥中36-1油田水驱后砂岩储层变化规律研究[D]. 青岛: 中国石油大学(华东), 2018.
[22] Zhu W S. Research on the variation law of sandstone reservoir after water flooding in QHD32-6 and SZ36-1 oilfields[D]. Qingdao: China University of Petroleum (East China), 2018.
[23] 张平. 以大庆油田模式虚拟开发秦皇岛32-6油田的数值模拟研究[D]. 大庆: 东北石油大学, 2011.
[23] Zhang P. Numerical simulation of virtual development of Qinhuangdao 32-6 Oilfield with the mode of Daqing Oilfield[D]. Daqing: Northeast Petroleum University, 2011.
[24] 周明, 孙树栋. 遗传算法理论及应用[M]. 北京: 国防工业出版社, 1999.
[24] Zhou M, Sun S D. Theory and application of genetic algorithm[M]. Beijing: National Defense Industry Press, 1999.
[25] 王小平, 曹立明. 遗传算法—理论应用与软件实现[M]. 西安: 西安交通大学出版社, 2002.
[25] Wang X P, Cao L M. Genetic algorithm:Theory application and software implementation[M]. Xi'an: Xi'an Jiaotong University Press, 2002.
[26] 李建军, 邓少贵, 范宜仁, 等. 岩样复电阻率影响因素研究[J]. 测井技术, 2005(1):11-14,90.
[26] Li J J, Deng S G, Fan Y R, et al. Study on influential factors on Core's complex resistivity[J]. Well Logging Technology, 2005(1):11-14,90.
[27] Vinegar H J, Waxman M H. Induced polarization of shaly sands[J]. Geophysics, 1984, 49(8):1267-1287.
doi: 10.1190/1.1441755
[1] 陈星河, 张超谟, 朱林奇, 张冲, 张占松, 郭建宏. 联合核磁共振测井与Thomeer模型评价碳酸盐岩储层饱和度[J]. 物探与化探, 2023, 47(1): 110-119.
[2] 殷启春, 王元俊, 周道容, 张丽, 孙桐. 复电阻率法在安徽南陵盆地海相页岩气勘探中的应用[J]. 物探与化探, 2022, 46(3): 668-677.
[3] 何胜, 马文鑫, 甘斌. 地面核磁共振法与高密度电阻率法在西藏盐湖卤水钾矿勘查中的应用[J]. 物探与化探, 2021, 45(6): 1409-1415.
[4] 汤克轩, 李俊丽, 李振宇, 朱源婷, 张文波. 顺磁性物质对冻土核磁共振信号的影响[J]. 物探与化探, 2017, 41(6): 1268-1274.
[5] 谢梦莹, 张文波, 汤克轩, 李振宇, 鲁恺. 离子浓度对冻土核磁共振响应信号的影响分析及研究[J]. 物探与化探, 2017, 41(6): 1262-1267.
[6] 任志平, 李貅, 戚志鹏, 赵威, 智庆全, 刘磊. 地面核磁共振三维响应影响因素[J]. 物探与化探, 2017, 41(1): 92-97.
[7] 王晓明, 崔伟, 聂栋刚. 地面核磁共振地下水探测技术在水库大坝渗漏勘查中的应用[J]. 物探与化探, 2015, 39(2): 432-436.
[8] 龙作元, 何胜. 核磁共振测深方法在多年冻土区找水中的应用[J]. 物探与化探, 2015, 39(2): 288-291.
[9] 潘国林, 卢琳, 聂栋刚. 地面核磁共振方法在阳台滑坡中的应用[J]. 物探与化探, 2014, (3): 616-619,623.
[10] 李静叶, 王祝文, 刘菁华, 王宏伟, 张大庆. 核磁测井资料在复杂储层评价中的应用效果[J]. 物探与化探, 2012, 36(1): 84-88.
[11] 葛成, 郭新军, 赵海波, 李朋, 陈晓雪. 核磁共振T2谱反演影响因素[J]. 物探与化探, 2011, 35(6): 845-847,854.
[12] 张焱孙, 张虎生, 邢应太, 杜瑞云. 江西北武夷某多金属矿区复电阻率法勘查效果[J]. 物探与化探, 2010, 34(5): 587-589.
[13] 刘豪睿, 孙亚坤, 能昌信, 王聪, 刘玉强, 董路. 铬污染土壤复电阻率频散特性[J]. 物探与化探, 2010, 34(3): 372-375.
[14] 汤永梅, 邹长春, 秦菲莉, 李凤琴. 利用核磁共振和双频电阻率测井评价高矿化度地层水淹层[J]. 物探与化探, 2009, 33(6): 668-673.
[15] 孙淑琴, 林君, 张庆文, 嵇艳鞠. 氢质子弛豫过程[J]. 物探与化探, 2005, 29(2): 153-156,160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com