Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (4): 1098-1108    DOI: 10.11720/wtyht.2023.1287
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
青海东部表层土壤有机碳密度及其空间分布特征
刘庆宇1(), 马瑛1, 程莉2, 沈骁1, 张亚峰1, 苗国文1, 黄强1, 韩思琪1
1.青海省第五地质勘查院,青海 西宁 810099
2.青海省地质矿产测试应用中心,青海 西宁 810000
Density and spatial distribution of organic carbon in the topsoil of eastern Qinghai
LIU Qing-Yu1(), MA Ying1, CHENG Li2, SHEN Xiao1, ZHANG Ya-Feng1, MIAO Guo-Wen1, HUANG Qiang1, HAN Si-Qi1
1. The Fifth Geological Exploration Institute of Qinghai Province, Xining 810099, China
2. Qinghai Geology and Mineral Testing Application Center, Xining 810000, China
全文: PDF(4862 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

整合了青海省东部地区33 092 km2多目标区域地球化学调查和土地质量地球化学调查数据,估算了研究区表层土壤有机碳总储量为171.16 Mt,平均有机碳密度为5 172.14 t/km2,并分析了表层土壤有机碳空间分布特征和主要影响因素。结果表明:在高山和中低山地貌、草原土和草甸土土壤类型、残坡积物成土母质、林草地和高山稀疏植被区土地利用、草原和森林系统下,表层土壤有机碳平均密度明显偏高,在沙漠地貌、风沙土土壤类型和风成砂成土母质区表层土壤有机碳密度最低,说明地形地貌(海拔高低)、成土母质、气候及植被均对表层土壤有机碳密度及分布规律产生影响。与青海省土壤第二次普查数据有机碳储量对比,在过去20多年里青海东部表层土壤共释放约53.21 Mt有机碳,表明在长期耕种、过度砍伐和放牧等人类生产活动影响下土壤有机碳已出现一定程度的下降。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘庆宇
马瑛
程莉
沈骁
张亚峰
苗国文
黄强
韩思琪
关键词 土壤有机碳密度分布特征表层土壤土壤类型青海东部    
Abstract

This study integrated the data of both the multi-purpose regional geochemical survey and land quality geochemical survey covering an area of 33 092 km2 in eastern Qinghai. Based on these data, the total organic carbon storage of topsoil in the study area was estimated to be 171.16 Mt, with an average organic carbon density of 5 172.14 t/km2. Moreover, this study analyzed the spatial distribution and main influencing factors of organic carbon in topsoil. As indicated by the results, the average density of organic carbon in topsoil is significantly high in high and middle-low mountains, grassland and meadow soils, soil parent materials of eluvial-slope deposits, forest grasslands, and alpine sparse vegetation areas, grassland and forest and is the lowest in deserts, aeolian sandy soil, and soil parent material areas of aeolian sands. This finding means that factors including topography (altitude), soil parent materials, climate, and vegetation affect the density and distribution of organic carbon in topsoil. Compared with the organic carbon storage revealed by the second general detailed soil survey in Qinghai, 53.21 Mt of organic carbon has been released from the topsoil of eastern Qinghai in the past 20 years. This result indicates that the soil organic carbon has decreased to a certain extent under the influence of human production activities such as long-term cultivation, overcutting, and overgrazing.

Key wordssoil organic carbon density    distribution characteristics    topsoil    soil type    eastern Qinghai
收稿日期: 2022-06-04      修回日期: 2022-11-03      出版日期: 2023-08-20
ZTFLH:  S153.6  
  X142  
基金资助:青海省省级地质勘查专项资金项目“青海省玉树市地区1:25万土地(牧草地)质量地球化学调查”(2022012019jc013);中国地质调查局国家公益性地质调查专项“青海门源—湟中地区1:25万土地质量地球化学调查”(DD20160319-07)
作者简介: 刘庆宇(1987-),男,理学学士,工程师,主要研究方向为农业地球化学、生态环境等。Email: 452250910@qq.com
引用本文:   
刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
LIU Qing-Yu, MA Ying, CHENG Li, SHEN Xiao, ZHANG Ya-Feng, MIAO Guo-Wen, HUANG Qiang, HAN Si-Qi. Density and spatial distribution of organic carbon in the topsoil of eastern Qinghai. Geophysical and Geochemical Exploration, 2023, 47(4): 1098-1108.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1287      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I4/1098
Fig.1  青海东部地区交通位置
Fig.2  青海东部地区地形地貌(a)、土壤类型(b)、土地利用(c)、生态系统分区(d)
地区 面积/km2 储量有机
碳/Mt
有机碳密度/
(t·km-2)
东北平原(黑龙江、吉林、辽宁) 230800 768.07 3327.8
成都平原(四川) 58956 248.90 4222
洞庭湖地区(湖南) 41696 165.49 3969
华北平原(河北) 80268 179.96 2242
渭河平原(陕西) 13648 30.90 2264
长江中下游平原(江苏) 106424 309.72 2910
黄土高原西段(甘肃) 42348 78.56 1870
青海东部 33092 171.16 5172.14
Table 1  中国典型地区表层土壤有机碳密度及储量特征
Fig.3  青海东部地区表层土壤单位有机碳密度分布
地貌景观 面积/km2 平均密度/
(t·km-2)
总储量/Mt 占比/%
河谷盆地 4324 4209.14 18.20 10.63
河谷平原 3456 4083.23 14.11 8.24
丘陵 13998 4521.96 63.30 36.98
湖积平原 564 6490.82 3.66 2.14
中低山 5056 6692.51 33.84 19.77
高山 5398 6966.43 37.60 21.98
沙漠 296 1497.15 0.44 0.26
Table 2  青海东部地区不同地貌有机碳储量和密度分布
土壤类型 面积/
km2
平均密度/
(t·km-2)
总储量/
Mt
占比/%
沼泽土 428 6732.70 2.88 1.68
山地草甸土 5012 6628.46 33.22 19.41
栗钙土 11760 3408.43 40.08 23.42
灰褐土 1216 9823.67 11.94 6.98
灰钙土 1456 2184.35 3.18 1.86
黑钙土 6156 5336.24 32.85 19.19
灌淤土 472 1438.60 0.68 0.40
高山寒漠土 296 13642.40 4.04 2.36
高山草原土 1920 7663.58 14.71 8.60
高山草甸土 4032 6681.11 26.94 15.74
风沙土 296 1463.65 0.43 0.25
潮土 48 3983.25 0.19 0.11
Table 3  青海东部地区不同土壤类型有机碳储量和密度分布
成土母质 面积/
km2
平均密度/
(t·km-2)
总储量/
Mt
占比/%
冲洪积物 16928 4449.62 75.32 44.01
残坡积物 8488 8568.13 72.73 42.49
湖积物 464 3817.04 1.77 1.03
风成砂 488 1589.75 0.78 0.46
黄土 6724 3058.08 20.56 12.01
Table 4  青海东部地区不同成土母质有机碳储量和密度分布
土地利用 面积
/km2
平均密度/
(t·km-2)
总储量/
Mt
占比/%
草地 21292 5517.92 117.49 68.64
林地 3012 7723.06 23.26 13.59
旱地 5972 3480.89 20.79 12.15
水浇地 1712 3242.49 5.55 3.24
建筑用地(城镇用地) 208 3342.42 0.70 0.41
裸地(高山植被稀疏覆盖区) 400 6231.53 2.49 1.45
滩涂 496 1774.24 0.88 0.51
Table 5  青海东部地区不同土地利用类型有机碳储量和密度分布
生态系统 面积/km2 平均密度/
(t·km-2)
总储量/Mt 占比/%
草原生态系统 21692 5531.08 119.98 70.10
城镇生态系统 208 3342.42 0.70 0.41
湖泊生态系统 176 2454.93 0.43 0.25
农田生态系统 7688 3426.65 26.34 15.39
森林生态系统 3008 7731.65 23.26 13.59
沙漠生态系统 320 1399.87 0.45 0.26
Table 6  青海东部地区不同生态系统有机碳储量和密度分布
Fig.4  青海东部地区近20年表层土壤有机碳储量变化趋势
土壤类型 多目标时期有
机碳储量/Mt
二普时期有
机碳储量/Mt
碳储量
变化量/Mt
潮土 0.19 0.12 0.07
风沙土 0.43 0.40 0.03
高山草甸土 26.94 45.85 -18.92
高山草原土 14.71 7.12 7.59
高山寒漠土 4.04 0.51 3.53
灌淤土 0.68 1.37 -0.69
黑钙土 32.85 54.18 -21.33
灰钙土 3.18 2.50 0.68
灰褐土 11.95 28.41 -16.46
栗钙土 40.08 43.24 -3.16
山地草甸土 33.22 36.62 -3.39
沼泽土 2.88 4.03 -1.15
总计 171.16 224.36 -53.21
Table 7  青海东部地区不同土壤类型有机碳储量变化趋势统计
[1] 曹宏杰, 王立民, 罗春雨, 等. 三江平原地区土壤有机碳及其组分的空间分布特征[J]. 生态环境学报, 2013, 22(7):1111-1118.
[1] Cao H J, Wang L M, Luo C Y, et al. Spatial distribution patterns of soil organic carbon and its fractions in Sanjiang Plain[J]. Ecology and Environmental Sciences, 2013, 22(7):1111-1118.
[2] 陈泮勤. 地球系统碳循环[M]. 北京: 科学出版社, 2004:1-30.
[2] Chen P Q. Earth system carbon cycle[M]. Beijing: Science Press, 2004:1-30.
[3] 奚小环, 李敏, 张秀芝, 等. 中国中东部平原及周边地区土壤有机碳分布与变化趋势研究[J]. 地学前缘, 2013, 20(1):154-165.
[3] Xi X H, Li M, Zhang X Z, et al. Research on soil organic carbon distribution and chang trend in middle-east plain and its vicinity in China[J]. Earth Science Frontiers, 2013, 20(1):154-165.
[4] 李成, 王让会, 李兆哲, 等. 中国典型农田土壤有机碳密度的空间分异及影响因素[J]. 环境科学, 2021, 42(5):2432-2439.
[4] Li C, Wang R H, Li Z Z, et al. Spatial differentiation of soil organic carbon density and influencing factors in typical croplands of China[J]. Environmental Science, 2021, 42(5):2432-2439.
doi: 10.1021/es702384f
[5] 张立, 金晶泽, 姜侠, 等. 1986—2019年黑龙江省松嫩平原表层土壤有机碳变化及固碳潜力估算[J]. 现代地质, 2021, 35(4):914-922.
[5] Zhang L, Jin J Z, Jiang X, et al. Variations of organic carbon and evaluation of carbon sequestration potential in surface soil in Songnen Plain of Heilongjiang Province from 1986 to 2019[J]. Geoscience, 2021, 35(4) :914-922.
[6] 马剑, 金铭, 敬文茂, 等. 祁连山中段典型植被土壤有机碳密度研究[J]. 中南林业科技大学学报, 2020, 40(8):99-105.
[6] Ma J, Jin M, Jing W M, et al. Study on soil organic carbon density of typical vegetation in middle Qilian mountains[J]. Journal of Central South University of Forestry & Technology, 2020, 40(8):99-105.
[7] 张亚亚, 郭颖, 刘海红, 等. 青藏高原表土有机碳、全氮含量分布及其影响因素[J]. 生态环境学报, 2018, 27(5):866-872.
doi: 10.16258/j.cnki.1674-5906.2018.05.010
[7] Zhang Y Y, Guo Y, Liu H H, et al. Content and impact factors of soil organic carbon and total nitrogen on the Qinghai-Tibet Plateau[J]. Ecology and Environmental Sciences, 2018, 27(5):866-872.
[8] 刘庆宇, 马瑛, 程莉. 青海门源县土壤质量地球化学评价[J]. 地质与勘探, 2022, 58(3):609-618.
[8] Liu Q Y, Ma Y, Cheng L. Geochemical evaluation of soil quality in Menyuan County of Qinghai Province[J]. Geology and Exploration, 2022, 58(3):609-618.
[9] 张亚峰, 马强, 姬丙艳, 等. 青海周边地区土壤碳汇潜力评价[J]. 中国矿业, 2016, 25(S1):271-273,295.
[9] Zhang Y F, Ma Q, Ji B Y, et al. Evaluation on potential siol carbon sequestration in the surrounding area of Qinghai[J]. China Mining Magazine, 2016, 25(S1) :271-273,295.
[10] 奚小环. 自然资源时期:大数据与地球系统科学——再论全面发展时期的勘查地球化学[J]. 物探与化探, 2019, 43(3):449-460.
[10] Xi X H. Natural resources period:Big data and systematic science of the earth-More on exploration geochemistry during the overall development period[J]. Geophysical and Geochemical Exploration, 2019, 43(3):449-460.
[11] 马瑛, 刘庆宇, 黄强, 等. 青海门源—湟中地区1:25万土地质量地球化学调查成果报告[R]. 青海省第五地质勘查院, 2019.
[11] Ma Y, Liu Q Y, Huang Q, et al. Report on 1:250 000 geochemical investigation results of land quality in Menyuan-Huangzhong area,Qinghai Province[R]. The fifth Geological Exploration Institute of Qinghai Province, 2019.
[12] 姬丙艳, 许光. 青海东部生态地球化学成果及经济效益示范[M]. 北京: 中国地质大学出版社, 2020:70-97.
[12] Ji B Y, Xu G. Eco geochemical achievements and economic benefit demonstration in eastern Qinghai[M]. Beijing: China University of Geosciences Press, 2020:70-97.
[13] 青海省农业资源区划办公室. 青海土壤[M]. 北京: 中国农业出版社, 1997.
[13] Qinghai Agricultural Resources Regionalization Office. Qinghai soil[M]. Beijing: China Agriculture Press, 1997.
[14] 袁杰, 曹广超, 鄂崇毅, 等. 环青海湖表层土壤沉积物粒度分布特征及其指示意义[J]. 水土保持研究, 2015, 22(3):150-154.
[14] Yuan J, Cao G C, E C Y. et al. Grain size distribution of surface soil deposit around Qinghai Lake and its implications[J]. Research of Soil and Water Conservation, 2015, 22(3):150-154.
[15] 瓮耐义, 刘康, 王纪伟. 基于GIS的高原植被空间格局与地形因子相关关系研究[J]. 水土保持通报, 2014, 34(1):232-236.
[15] Weng N Y, Liu K, Wang J W. A study of relationship between spatial vegetation pattern and terrain factors based on GIS Techniques[J]. Bulletin of Soil and Water Conservation, 2014, 34(1):232-236.
[16] 张立, 崔玉军, 刘国栋, 等. 哈尔滨—绥化地区土壤氮储量及其时空变化特征[J]. 地质与资源, 2014, 23(2):188-191.
[16] Zhang L, Cui Y J, Liu G D, et al. Soil nitrogen storage and its variation in space and time in Harbin-Suihua area[J]. Geology and Resources, 2014, 23(2):188-191.
[17] 张明, 陈国光, 刘红樱, 等. 长江三角洲表层土壤Sn元素的空间分布特征及影响因素[J]. 地质通报, 2011, 30(7):1147-1154.
[17] Zhang M, Chen G G, Liu H Y, et al. Spatial distribution of tin in top soils of Yangtze River delta and influencing factors[J]. Geological Bulletin of China, 2011, 30(7):1147-1154.
[18] 奚小环, 张建新, 廖启林, 等. 多目标区域地球化学调查与土壤碳储量问题——以江苏、湖南、四川、吉林、内蒙古为例[J]. 第四纪研究, 2008, 28(1):58-67.
[18] Xi X H, Zhang J X, Liao Q L, et al. Multi-purose regional geochemical survey and soil carbon reserves problem:Examples of Jiangsu,Hunan,Sichuan,Jilin Provinces and Inner Mongolia[J]. Quaternayr Sciences, 2008, 28(1):58-67.
[19] 刘文辉. 甘肃省张掖—永昌地区土壤有机碳密度估算及其空间分布特征[J]. 物探与化探, 2013, 37(3):552-556.
[19] Liu W H. The soil organic carbon density and its distribution characteristics in Zhangye-Yongchang area,Gansu Province[J]. Geophysical and Geochemical Exploration, 2013, 37(3):552-556.
[20] 鲍丽然, 龚媛媛, 严明书, 等. 渝西经济区土壤地球化学基准值与背景值及元素分布特征[J]. 地球与环境, 2015, 43(1):31-40.
[20] Bao L R, Gong Y Y, Yan M S, et al. Element geochemical baseline and distributions in soil in Chongqing West Economic zone,China[J]. Earth and Environment, 2015, 43(1):31-40.
[21] 韩伟, 王乔林, 宋云涛, 等. 四川省沐川县北部土壤硒地球化学特征与成因探讨[J]. 物探与化探, 2021, 45(1):215-222.
[21] Han W, Wang Q L, Song Y T, et al. Geochemical characteristics and genesis of selenium in soil in northern Muchuan County,Sichuan Province[J]. Geophysical and Geochemical Exploration, 2021, 45(1):215-222.
[22] 刘国栋, 李禄军, 戴慧敏, 等. 松辽平原土壤碳库变化及其原因分析[J]. 物探与化探, 2021, 45(5):1109-1120.
[22] Liu G D, Li L J, Dai H M, et al. Change in soil carbon pool in Songliao Plain and its cause analysis[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1109-1120.
[23] 奚小环, 杨忠芳, 夏学齐, 等. 基于多目标区域地球化学调查的中国土壤碳储量计算方法研究[J]. 地学前缘, 2009, 16(1):194-205.
[23] Xi X H, Yang Z F, Xia X Q, et al. Calculation techniques for soil carbon storage of China based on mult-ipurposegeochemical survey[J]. Earth Science Frontiers, 2009, 16(1):194-205.
[24] 贺鹏飞, 魏明辉, 李秋燕, 等. 内蒙古鄂伦春旗东部主要农耕区土壤有机碳含量及主要影响因素分析[J]. 地质与资源, 2020, 29(6):574-578.
[24] He P F, Wei M H, Li Q Y, et al. Soil organic carbon in the main cultivated lands of eastern Oroqen Banner,Inner Mongolia:Contents and major influencing factors[J]. Geology and Resources, 2020, 29(6):574-578.
[25] 张妍, 谷志云, 裴瑞亮, 等. 河南商丘地区土壤有机碳密度及其空间分布特征[J]. 勘查勘查, 2021, 12(10):2153-2160.
[25] Zhang Y, Gu Z Y, Pei R L, et al. Soil organic carbon density and distribution in Shangqiu area,Henan Province[J]. Mineral Exploration, 2021, 12(10):2153-2160.
[26] 张亚峰, 姬丙艳, 马强, 等. 青海湟水河流域表层土壤有机碳储量和密度浅析[J]. 西北地质, 2012, 45(1):298-301.
[26] Zhang Y F, Ji B Y, Ma Q, et al. Preliminary analysis of organic carbon density and Storage of surface soils in Huangshui River Basin at Qinghai Province[J]. Northwestern Geology, 2012, 45(1):298-301.
[27] 张秀芝, 赵相雷, 李宏亮, 等. 河北平原土壤有机碳储量及固碳机制研究[J]. 地学前缘, 2011, 18(6):41-55.
[27] Zhang X Z, Zhao X L, Li H L, et al. Research on organic carbon storage and sequestration mechanism of soils in the Hebei Plain[J]. Earth Science Frontiers, 2011, 18(6):41-55.
[28] 李春亮, 王翔, 张炜, 等. 黄土高原西段表层土壤有机碳储量及时空变化规律[J]. 现代地质, 2022, 36(2):655-661.
[28] Li C L, Wang X, Zhang W, et al. Topsoil organic carbon storage and its spatial and temporal variation in the western Loess Plateau[J]. Geoscience, 2022, 36(2):655-661.
[29] 代杰瑞, 庞绪贵, 董健, 等. 山东省土壤有机碳库及其时空变化特征[J]. 现代地质, 2017, 31(2):386-393.
[29] Dai J R, Pang X G, Dong J, et al. Soil organic carbon pool and temporal variation characteristics in Shandong Province[J]. Geoscience, 2017, 31(2):386-393.
[30] 姜蓝齐, 臧淑英, 张丽娟, 等. 松嫩平原农田土壤有机碳变化及固碳潜力估算[J]. 生态学报, 2017, 37(21):7068-7081.
[30] Jiang L Q, Zang S Y, Zhang L J, et al. Temporal and spatial variations of organic carbon and evaluation of carbon sequestration potential in the agricultural topsoil of the Songnen Plain[J]. Acta Ecologica Sinica, 2017, 37(21):7068-7081.
[31] 鲍丽然, 严明书, 贾中民, 等. 重庆西部表层土壤有机碳储量与密度分布[J]. 物探与化探, 2015, 39(1):180-185.
[31] Bao L R, Yan M S, Jia Z M, et al. The distribution of the surface soil organic carbon storage and density in western Chongqing[J]. Geophysical and Geochemical Exploration, 2015, 39(1):180-185.
[32] 宋满珍, 刘琪璟, 吴自荣, 等. 江西省森林土壤有机碳储量研究[J]. 南京林业大学学报:自然科学版, 2010, 34(2):6-10.
[32] Song M Z, Liu Q J, Wu Z R, et al. Organic carbon storage of forest soil in Jiangxi province[J]. Jourrnal of Nanjing Forestry University:Natural Science Edition, 2010, 34(2):6-10.
[33] 李林, 李晓东, 校瑞香, 等. 青藏高原东北部气候变化的异质性及其成因[J]. 自然资源学报, 3019, 34(7):1496-1505.
[33] Li L, Li X D, Xiao R X, et al. The heterogeneity of climate change and its genesis in the Northeastern Qinghai-Tibet Plateau[J]. Journal of Natural Resources, 3019, 34(7):1496-1505.
[34] 钟聪, 杨忠芳, 夏学齐, 等. 青海省土壤有机碳储量估算及其源汇因素分析[J]. 现代地质, 2012, 26(5):896-909.
[34] Zhong C, Yang Z F, Xia X Q, et al. Estimation of soil organic carbon storage and analysis of soil carbon source/sink factors in Qinghai Province[J]. Geoscience, 2012, 26(5):896-909.
[35] 奚小环, 杨忠芳, 崔玉军, 等. 东北平原土壤有机碳分布与变化趋势研究[J]. 地学前缘, 2010, 17(3):213-221.
[35] Xi X H, Yang Z F, Cui Y J, et al. A study of soil carbon distribution and change in Northeast Plain[J]. Earth Science Frontiers.Earth Science Frontiers, 2010, 17(3):213-211.
[36] 奚小环, 杨忠芳, 廖启林, 等. 中国典型地区土壤碳储量研究[J]. 第四纪研究, 2010, 30(3):573-583.
[36] Xi X H, Yang Z F, Liao Q L, et al. Soil organic carbon storage in typical regions of China[J]. Quaternary Sciences, 2010, 30(3):573-583.
[37] 罗由林, 李启权, 王昌全, 等. 近30年来川中紫色丘陵区土壤碳氮时空演变格局及其驱动因素[J]. 土壤学报, 2016, 53(3):582-593.
[37] Luo Y L, Li Q Q, Wang C Q, et al. Spatio-temporal variations of soil organic carbon and total nitrogen and driving factors in purple soil hilly area of mid-Sichuan Basin in the past 30 years[J]. Acta Pedologica Sinica, 2016, 53(3):582-593.
[38] 傅野思, 夏学齐, 杨忠芳. 内蒙古自治区土壤有机碳库储量及分布特征[J]. 现代地质, 2012, 26(5):886-895.
[38] Fu Y S, Xia X Q, Yang Z F. Storage and distribution of soil organic carbon in Inner Mongolia[J]. Geoscience, 2012, 26(5):886-895.
[39] 刘文辉, 李春亮, 吴永强. 甘肃省兰州—白银地区土壤有机碳库储量估算与空间分布特征[J]. 物探与化探, 2012, 36(3):367-371.
[39] Liu W H, Li C L, Wu Y Q. Reserves estimation and spatial distribution of the organic carbon pool in Lanzhou-Baiyin area,Gansu Province[J]. Geophysical and Geochemical Exploration, 2012, 36(3):367-371.
[40] 马逸麟, 郄海满, 彭晓玫, 等. 江西省鄱阳湖及周边经济区土壤有机碳储量分布特征[J]. 岩矿测试, 2014, 33(2):246-255.
[40] Ma Y L, Qie H M, Peng X M, et al. The reserve distribution characteristics of organic carbon in soil from Poyang Lake and the surrounding economic region[J]. Rock and Mineral Analysis, 2014, 33(2):246-255.
[41] 郭灵辉, 高江波, 吴绍洪, 等. 1981—2010年内蒙古草地土壤有机碳时空变化及其气候敏感性[J]. 环境科学研究, 2016, 29(7):1050-1058.
[41] Guo L H, Gao J B, Wu S H, et al. Spatial-temporal change of soil organic carbon and its susceptibility to climate change in Inner Mongolia Grassland during 1981-2010[J]. Research of Environmental Sciences, 2016, 29(7):1050-1058.
[42] 程先富, 谢勇. 基于GIS 的安徽省土壤有机碳密度的空间分布特征[J]. 地理科学, 2009, 29(4):540-544.
[42] Cheng X F, Xie Y. Spatial distribution of soil organic carbon density in Anhui Province based on GIS[J]. Scientia Geographica Sinica, 2009, 29(4):540-544.
[43] 罗由林, 李启权, 王昌全, 等. 四川省仁寿县土壤有机碳空间分布特征及其主控因素[J]. 中国生态农业学报, 2015, 23(1):34-42.
[43] Luo Y L, Li Q Q, Wang C Q, et al. Spatial variability of soil organic carbon and related controlling factors in Renshou County,Sichuan Province[J]. Chinese Journal of Eco-Agriculture, 2015, 23(1):34-42.
[44] 张珍明, 周运超, 黄先飞, 等. 喀斯特小流域土壤有机碳密度及碳储量空间分布异质性[J]. 水土保持学报, 2017, 31(2):184-190,214.
[44] Zhang Z M, Zhou Y C, Huang X F, et al. Spatial heterogeneity and distribution characteristics of soil organic carbon density and soil carbon storage in a small Karst watershed[J]. Journal of Soil and Water Conservation, 2017, 31(2):184-190,214.
[45] 王经波, 郑利林, 郭宇菲, 等. 鄱阳湖湿地土壤有机碳空间分布及其影响因素[J]. 长江流域资源与环境, 2022, 31(4):915-926.
[45] Wang J B, Zheng L L, Guo Y F, et al. Spatial distribution of soil organic carbon and its influencing factors in Poyang Lake wetlan[J]. Resources and Environment in the Yangtze Basin, 2022, 31(4):915-926.
[46] 虞舟鲁, 邱乐丰, 林霖. 土地利用方式变化对农业土壤有机碳空间分布的影响[J]. 浙江农业学报, 2017, 29(5):806-811.
doi: 10.3969/j.issn.1004-1524.2017.05.17
[46] Yu Z L, Qiu L F, Lin L. Influence of land use changes on soil organic carbon distribution in agricultural soils[J]. Acta Agriculturae Zhejiangensis, 2017, 29(5):806-811.
doi: 10.3969/j.issn.1004-1524.2017.05.17
[47] 黎英华, 姚云峰, 秦富仓, 等. 不同类型土壤的有机碳密度特征[J]. 干旱区研究, 2016, 33(3):455-460.
[47] Li Y H, Yao Y F, Qin F C, et al. Distribution of different types of soil organic carbon density[J]. Arid Zone Research, 2016, 33(3):455-460.
[48] 吕文强, 周传艳, 闫俊华, 等. 贵州省主要森林类型土壤有机碳密度特征及其影响因素[J]. 地球与环境, 2016, 44(2):147-153.
[48] Lyu W Q, Zhou C Y, Yan J H, et al. Soil organic carbon density and its influencing factors for the forest region of Guizhou Province,China[J]. Earth and Environment, 2016, 44(2):147-153.
[49] 袁芳, 赵小敏, 乐丽红, 等. 江西省表层土壤有机碳库储量估算与空间分布特征[J]. 生态环境, 2008, 17(1):268-272.
[49] Yuan F, Zhao X M, Le L H, et al. Organic carbon reserves of topsoil and spatial distribution in Jiangxi Province[J]. Ecology and Environment, 2008, 17(1):268-272.
[50] 王晓, 于兵, 李继红. 土地利用和土地覆被变化对土壤有机碳密度及碳储量变化的影响——以黑龙江省大庆市为例[J]. 东北林业大学学报, 2021, 49(11):76-83.
[50] Wang X, Yu B, Li J H. Effects of land use and land cover change on soil organic carbon density and carbon storage—A case study of Daqing,Heilongjiang Province[J]. Journal Northeast Forestry University, 2021, 49(11):76-83.
[51] 涂夏明, 周家茂, 曹军骥, 等. 黄土高原不同土地利用类型有机碳和黑碳的储量及意义[J]. 地球环境学报, 2017, 8(1):65-71.
[51] Tu X M, Zhou J M, Cao J J, et al. Implication and storage of soil organic carbon and black carbon in different land use types in the topsoil of Loess Plateau[J]. Journal of Earth Environment, 2017, 8(1):65-71.
[52] 原一荃, 王繁. 杭州湾南岸围垦区土壤有机碳空间分布特征及其影响因素[J]. 浙江农业科学, 2016, 57(2):285-287,296.
[52] Yuan Y Q, Wang F. Spatial distribution characteristics and influencing factors of soil organic carbon in the reclamation area on the South Bank of Hangzhou Bay[J]. Zhejiang Agricultural Science, 2016, 57(2):285-287,296.
[53] 张青青, 张桂莲, 伍海兵, 等. 城市森林土壤有机碳密度及影响因子变化研究[J]. 生态科学, 2022, 41(2):204-210.
[53] Zhang Q Q, Zhang G L, Wu H B, et al. Study on changes of soil organic carbon density and influencing factors in urban forest[J]. Ecological Science, 2022, 41(2):204-210.
[54] 郭晓伟, 骆土寿, 李意德, 等. 海南尖峰岭热带山地雨林土壤有机碳密度空间分布特征[J]. 生态学报, 2015, 35(23):7878-7886.
[54] Guo X W, Luo T S, Li Y D, et al. Spatial distribution characteristics of soil organic carbon density in a tropical mountain rainforest of Jianfengling,Hainan Island,China[J]. Acta Ecologica Sinica, 2015, 35(23):7878-7886.
[55] 代杰瑞, 庞绪贵, 曾宪东, 等. 山东省土壤有机碳密度的空间分布特征及其影响因素[J]. 环境科学研究, 2015, 28(9):1449-1458.
[55] Dai J R, Pang X G, Zeng X D, et al. Soil carbon density and distribution and influencing factors in Shandong Province[J]. Research of Environmental Sciences, 2015, 28(9):1449-1458.
[56] 青海省农业资源区划办公室. 青海土壤[M]. 北京: 中国农业出版社, 1997.
[56] Qinghai Agricultural Resources Regionalization Office. Qinghai soil[M]. Beijing: China Agriculture Press, 1997.
[57] 王文俊. 福建省土壤有机碳储量估算、时空分布特征及其影响因素[J]. 现代地质, 2019, 33(6):1295-1305.
[57] Wang W J. Reserve estimation,spatiotemporal distribution and its influencing factors of soil organic carbon in Fujian Province,China[J]. Geoscience, 2019, 33(6):1295-1305.
[58] 张亚峰, 姚振, 马强, 等. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2):206-212.
doi: 10.11867/j.issn.1001-8166.2018.02.0206
[58] Zhang Y F, Yao Z, Ma Q, et al. Study on the soil carbon pool and potential capacity of carbon sequestration in the northern Tibetan Plateau[J]. Advances in Earth Science, 2018, 33(2):206-212.
doi: 10.11867/j.issn.1001-8166.2018.02.0206
[58] 田耀武, 贺春玲, 刘龙昌, 等. 退耕草地土壤有机碳密度的空间分布及动态变化[J]. 草业学报, 2016, 25(8):48-55.
doi: 10.11686/cyxb2015499
[58] Tian Y W, He C L, Liu L C, et al. Changes in the spatial distribution and dynamics of soil organic carbon density in grasslands converted from farmland[J]. Acta Prataculturae Sinica, 2016, 25(8):48-55.
[60] 卫玮, 党坤良. 秦岭南坡林地土壤有机碳密度空间分异特征[J]. 林业科学, 2019, 55(5):11-19.
[60] Wei W, Dang K L. Spatial variation of the density of soil organic carbon in forest land on the southern slope of Qinling Mountains[J]. Scientia Silvae Sinicae, 2019, 55(5):11-19.
[1] 李开富, 马欢, 张艳, 李威龙, 姜纪沂, 黄斌, 章龙管, 秦孟博. 基于时移电阻率法的平谷局部地区地下水时空特征研究[J]. 物探与化探, 2023, 47(4): 1002-1009.
[2] 赵玉岩, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹. 农田土壤—植物系统中钒的迁移富集规律[J]. 物探与化探, 2023, 47(3): 835-844.
[3] 宋运红, 杨凤超, 刘凯, 戴慧敏, 许江, 杨泽. 三江平原耕地土壤重金属元素分布特征及影响因素的多元统计分析[J]. 物探与化探, 2022, 46(5): 1064-1075.
[4] 居字龙, 秦志军, 万翔, 袁航, 张小波, 王登. 湖北红安县生态地质调查土壤重金属分布特征及生态风险评价[J]. 物探与化探, 2022, 46(4): 988-998.
[5] 李永春, 苏日力格, 周文辉, 邰苏日嘎拉, 陈国栋, 王永亮, 高琪, 张祥, 张栋. 宁夏南部山区葫芦河流域土壤地球化学特征及影响因素分析[J]. 物探与化探, 2022, 46(4): 999-1010.
[6] 李生清. 海河流域沉积物重金属形态分布特征及生态风险评估[J]. 物探与化探, 2022, 46(3): 781-786.
[7] 张沁瑞, 李欢, 邓宇飞, 黄勇, 张博, 许一波. 北京东南郊土壤重金属元素分布及其在表层土壤中的富集特征[J]. 物探与化探, 2022, 46(2): 490-501.
[8] 侯进凯, 宋延斌, 朱瑞祯, 莘丰培, 周建川, 鲁富兰, 姚婕. 洛阳市伊川县鸦岭镇—汝阳县小店镇一带表层土壤硒形态研究[J]. 物探与化探, 2022, 46(2): 511-517.
[9] 侯佳渝, 杨耀栋, 程绪江. 天津市城区不同功能区绿地土壤重金属分布特征及来源研究[J]. 物探与化探, 2021, 45(5): 1130-1134.
[10] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[11] 吴兴盛. 福建省武平县富硒土壤特征及成因分析[J]. 物探与化探, 2021, 45(3): 778-784.
[12] 牛雪, 何锦, 庞雅婕, 明圆圆. 三江平原西部土壤硒分布特征及其影响因素[J]. 物探与化探, 2021, 45(1): 223-229.
[13] 唐世琪, 万能, 曾明中, 杨柯, 刘飞, 彭敏, 李括, 杨峥. 恩施地区土壤与农作物硒镉地球化学特征[J]. 物探与化探, 2020, 44(3): 607-614.
[14] 李朋飞, 陈富荣, 杜国强, 陶春军, 刘超, 刘坤. 安徽涡河沿岸土壤氟含量特征及其影响因素[J]. 物探与化探, 2020, 44(2): 426-434.
[15] 王月平, 张立, 崔玉军, 吕石佳. 宝清县东部土壤硒含量特征及其与土壤性质的关系[J]. 物探与化探, 2019, 43(4): 904-911.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com