Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (2): 527-533    DOI: 10.11720/wtyht.2024.1088
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
防城港海域沉积物中正构烷烃分布和来源解析
庞国涛1(), 杨源祯1, 谢磊1, 李伟1, 张晓磊1,2, 闫兴国1
1.中国地质调查局 烟台海岸带地质调查中心,山东 烟台 264000
2.中国海洋大学 海洋地球科学学院,山东 青岛 266100
Distribution and sources of n-alkanes in sediments in the Fangchenggang sea area
PANG Guo-Tao1(), YANG Yuan-Zhen1, XIE Lei1, LI Wei1, ZHANG Xiao-Lei1,2, YAN Xing-Guo1
1. Yantai Center of Coastal Zone Geological Survey, China Geological Survey, Yantai 264000, China
2. College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
全文: PDF(2425 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

正构烷烃由于其化学性质稳定,在自然界中普遍存在,是表征有机质来源的良好标志物。利用气质联用仪(GC/MS)对2021年9月采集的防城港海域表层沉积物中的正构烷烃进行检测,对其含量、分布特征进行分析,运用特征参数对其来源进行解析。结果表明:正构烷烃含量在(67.51~850.08)×10-9(干重)之间,均值为476.69×10-9(干重),高值区主要分布在企沙半岛南部海域;主要由连续分布的n-C14~n-C35正构烷烃同系物组成,呈双峰分布,前峰群偶碳数优势,后峰群奇碳数优势;陆、海源烷烃比(∑T/∑M)、碳优势指数(CPI)和陆、海源烷烃优势比(TAR)均指示研究区正构烷烃受陆源影响明显;平均链长(ACL)、烷烃指数(AI)和Pmar-aq进一步表明其主要来源于陆源草本植物;T-ALK/C16比值表明研究海域受到石油污染影响;姥鲛烷和植烷比值(Pr/Ph)表明研究海域沉积物中正构烷烃形成于氧化环境。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庞国涛
杨源祯
谢磊
李伟
张晓磊
闫兴国
关键词 沉积物正构烷烃特征比值来源    
Abstract

n-alkanes, exhibiting stable chemical properties, are ubiquitous in nature. They are favorable indicators of the source of organic matter. Using the gas chromatography-mass spectrometry (GC/MS), this study detected n-alkanes in the surface sediments sampled from the Fangchenggang sea area in September 2021. It analyzed their content and distribution, as well as their source based on characteristic parameters. The results are as follows: ① The n-alkanes of the Fangchenggang sea area manifested a content range of (67.51~850.08)×10-9 (dw), averaging 476.69×10-9 (dw), with high values primarily distributed in the southern sea area of Qisha Peninsula; ② They were principally composed of extensive n-C14~n-C35 n-alkane homologues in a bimodal distribution. The former peak group displayed an even-carbon number advantage, while the latter showed an odd-carbon number advantage; ③ The terrestrial-marine alkane ratio (ΣT/ΣM), carbon predominance index (CPI), and terrestrial-marine alkane predominance ratio (TAR) all indicate a significant terrestrial influence on n-alkanes in the Fangchenggang sea area; ④ The average chain length (ACL), alkane index (AI), and Pmar-aq further suggest that n-alkanes were mainly from terrestrial herbs; ⑤ The T-ALK/C16 ratio implies that the Fangchenggang sea area experienced oil pollution; ⑥ The pristane/phytane ratio (Pr/Ph) reveals that n-alkanes in the sediments of the Fangchenggang sea area formed in an oxidizing environment.

Key wordssediment    n-alkane    characteristic ratio    source
收稿日期: 2023-02-28      修回日期: 2023-06-15      出版日期: 2024-04-20
ZTFLH:  X51  
基金资助:中国地质调查局自然资源综合调查指挥中心项目(ZD20220131);中国地质调查局项目(DD20191024)
作者简介: 庞国涛(1990-),男,硕士,工程师,主要从事海岸带环境地质调查与评价工作。Email:pgt5241@163.com
引用本文:   
庞国涛, 杨源祯, 谢磊, 李伟, 张晓磊, 闫兴国. 防城港海域沉积物中正构烷烃分布和来源解析[J]. 物探与化探, 2024, 48(2): 527-533.
PANG Guo-Tao, YANG Yuan-Zhen, XIE Lei, LI Wei, ZHANG Xiao-Lei, YAN Xing-Guo. Distribution and sources of n-alkanes in sediments in the Fangchenggang sea area. Geophysical and Geochemical Exploration, 2024, 48(2): 527-533.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1088      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I2/527
Fig.1  防城港海域采样位置
名称 检出限/
10-9
名称 检出限/
10-9
名称 检出限/
10-9
C14 1.2 C20 0.3 C28 0.4
C15 1.0 C21 0.5 C29 0.5
C16 0.8 C22 0.6 C30 0.5
C17 0.3 C23 0.6 C31 0.6
Pr 0.2 C24 0.5 C32 0.5
C18 0.5 C25 0.5 C33 0.5
Ph 0.6 C26 0.4 C34 1.0
C19 0.6 C27 0.5 C35 1.5
Table 1  正构烷烃检出限
Fig.2  研究区沉积物正构烷烃分布
Fig.3  典型站位不同链长烷烃含量的直方图
Fig.4  表层沉积物中海源正构烷烃∑C15-21、陆源正构烷烃∑C25-35含量的空间分布
位置 碳数 总量/
10-9
均值/
10-9
参考文献
锦州湾 n-C8~ n-C38 1900~4200 2600 [2]
东海近岸 n-C14~n-C34 530~2200 1515 [21]
厦门海域 n-C9~n-C36 1800~4270 2749 [22]
渤海及邻近海域 n-C11~n-C36 900~5100 2250 [23]
防城港海域 n-C14~n-C35 67.51~
850.08
476.69 本研究
Table 2  近岸海域表层沉积物中正构烷烃浓度比较
分析项目 T-ALK/10-9 CPI1 CPI2 ∑T/∑M ACL TAR T-ALK/C16 AI Pmar-aq Pr/Ph
FC01 286.71 0.48 2.38 3.60 30.13 4.25 16.18 0.61 0.14 1.67
FC03 197.34 0.51 2.27 2.06 30.03 2.43 10.16 0.57 0.15 1.41
FC05 67.51 0.90 2.54 3.17 30.11 2.97 20.74 0.57 0.12 2.02
FC07 544.79 0.37 2.49 2.94 30.16 4.45 12.96 0.58 0.13 1.57
FC09 505.39 0.38 2.84 1.97 30.15 3.03 9.82 0.59 0.13 1.57
FC11 338.78 0.43 1.70 6.16 29.67 8.95 22.98 0.51 0.10 2.99
FC14 457.41 0.57 3.48 6.61 29.76 10.14 27.85 0.57 0.17 2.31
FC16 474.88 0.43 2.00 2.23 29.85 3.22 11.97 0.54 0.13 1.58
FC18 263.64 0.91 1.53 5.38 29.48 4.85 28.82 0.46 0.10 2.34
FC20 393.22 0.64 2.26 2.34 29.12 2.45 14.03 0.54 0.32 2.95
FC22 655.35 0.28 2.36 1.77 29.43 3.65 9.38 0.49 0.19 1.90
FC24 295.59 0.98 1.34 10.66 29.16 9.48 58.37 0.42 0.10 1.67
FC26 551.38 0.41 3.46 2.98 30.36 4.03 13.07 0.63 0.12 0.99
FC28 747.27 0.33 2.78 1.76 30.32 2.97 11.21 0.61 0.15 1.37
FC30 637.12 0.34 2.79 1.40 30.31 2.31 9.33 0.59 0.16 0.87
FC32 598.35 0.36 2.99 1.35 30.16 2.31 8.29 0.58 0.16 1.43
FC34 462.93 0.86 2.65 6.36 30.18 7.36 33.62 0.59 0.15 1.65
FC36 743.53 0.47 2.34 2.64 30.04 3.74 13.01 0.57 0.12 1.78
FC38 850.08 0.33 2.58 1.15 30.04 2.14 8.24 0.57 0.16 1.71
FC40 499.43 0.39 2.41 1.27 30.03 1.86 7.51 0.57 0.18 1.36
FC42 439.83 0.33 2.69 1.63 29.52 2.81 9.14 0.52 0.21 1.50
平均值 476.69 0.51 2.47 3.31 29.91 4.26 16.98 0.56 0.15 1.74
Table 3  研究区表层沉积物正构烷烃特征参数
Fig.5  表层沉积物∑T/∑M、TAR空间分布
[1] Akram B B A R, Mohammadi J, et al. Characterization and ecological risk of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in sediments of Shadegan international wetland,the Persian Gulf[J]. Marine Pollution Bulletin, 2017, 124(1): 155-170.
doi: 10.1016/j.marpolbul.2017.07.015
[2] 李泽利, 马启敏, 程海鸥, 等. 锦州湾表层沉积物正构烷烃特征参数研究[J]. 环境科学, 2011, 32(11): 3300-3304.
[2] Li Z L, Ma Q M, Cheng H O, et al. Normal alkanes characteristic parameters of Jinzhou Bay surface sediments[J]. Environmental Science, 2011, 32(11): 3300-3304.
[3] Bush R T, Mcinerney F A. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy[J]. Geochimica et Cosmochimica Acta, 2013, 117:161-179.
doi: 10.1016/j.gca.2013.04.016
[4] 朱纯, 潘建明, 卢冰, 等. 长江口及邻近海域现代沉积物中正构烷烃分子组合特征及其对有机碳运移分布的指示[J]. 海洋学报, 2005, 27(4):59-67.
[4] Zhu C, Pan J M, Lu B, et al. Compositional feature of n-alkanes in modern sediment from the Changjiang Estuary and adjacent area and its implication to transport and distribution of organic carbon[J]. Acta Oceanologica Sinica, 2005, 27(4):59-67.
[5] Venturini N, Pita A L, Brugnoli E, et al. Benthic trophic status of sediments in a metropolitan area (Rio de la Plata estuary): Linkages with natural and human pressures[J]. Estuarine Coastal & Shelf Science, 2012, 112:139-152.
[6] Eglinton G, Hamilton R J. Leaf epicuticular waxes[J]. Science, 1967, 156(3780):1322-1335.
pmid: 4975474
[7] Duan Y. Organic geochemistry of recent marine sediments from the Nansha Sea,China[J]. Organic Geochemistry, 2000, 31(2/3):159-167.
doi: 10.1016/S0146-6380(99)00135-7
[8] Silliman J E, Schelske C L. Saturated hydrocarbons in the sediments of Lake Apopka,Florida[J]. Organic Geochemistry, 2003, 34(3):253-260.
doi: 10.1016/S0146-6380(02)00169-9
[9] Wang Z, Liu W G. Carbon chain length distribution in n-alkyl lipids:A process for evaluating source inputs to Lake Qinghai[J]. Organic Ceochemistry, 2012, 50:36-43.
[10] 赵美训, 张玉琢, 邢磊, 等. 南黄海表层沉积物中正构烷烃的组成特征、分布及其对沉积有机质来源的指示意义[J]. 中国海洋大学学报:自然科学版, 2011, 41(4): 90-96.
[10] Zhao M X, Zhang Y Z, Xing L, et al. The composition and distribution of n-alkanes in surface sediments from the South Yellow Sea and their potential as organic matter source indicators[J]. Periodical of Ocean University of China, 2011, 41(4):90-96.
[11] 防城港市地方志编纂委员会办公室. 防城港年鉴2016[M]. 南宁: 广西人民出版社, 2018.
[11] Office of Fangchenggang Local Chronicles Compilation Committee. Fangchenggang yearbook 2016[M]. Nanning: Guangxi People's Publishing House, 2018.
[12] 中国国家标准化管理委员会. GB 17378.3—2007海洋监测规范第3部分:样品采集、贮存与运输[S]. 北京: 中国标准出版社, 2007.
[12] The Standardization Administration of China. GB 17378.3—2007 The specification for marine monitoring.Part 3:Sample collection, storage and transportation[S]. Beijing: Chinese Standard Publishing house,2008.
[13] 周争桥, 夏维. 防城港海域潮流特征分析[J]. 海洋湖沼通报, 2021, 43(4):62-67.
[13] Zhou Z Q, Xia W. An analysis of tidal current characteristics of Fangchenggang sea area[J]. Transactions of Oceanology and Limnology, 2021, 43(4):62-67.
[14] Lei X, Zhang R, Liu Y, et al. Biomarker records of phytoplankton productivity and community structure changes in the Japan Sea over the last 166 kyr[J]. Quaternary Science Reviews, 2011, 30(19):2666-2675.
doi: 10.1016/j.quascirev.2011.05.021
[15] Ternois Y, Kawamura K, Keigwin L, et al. A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27,000 years[J]. Geochimica et Cosmochimica Acta, 2001, 65(5):791-802.
doi: 10.1016/S0016-7037(00)00598-6
[16] 阎琨, 庞国涛, 李伟. 广西茅尾海潮间带表层沉积物有机物特征及来源分析[J]. 海洋环境科学, 2022, 41(2):303-308.
[16] Yan K, Pang G T, Li W. Characteristics and sources of organic matter in surface sediments of the intertidal zone in Maowei sea,Guangxi[J]. Marine Environmental Science, 2022, 41(2):303-308.
[17] Mead R, Xu Y, Chong J, et al. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes[J]. Organic Geochemistry, 2005, 36(3):363-370.
doi: 10.1016/j.orggeochem.2004.10.003
[18] Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7/8):745-749.
doi: 10.1016/S0146-6380(00)00081-4
[19] Blumer M, Guillard R R L, Chase T. Hydrocarbons of marine phytoplankton[J]. Marine Biology, 1971, 8(3):183-189.
doi: 10.1007/BF00355214
[20] Eglinton G, Hamilton R J. Leaf epicuticular waxes[J]. Science, 1967, 156(3780):1322-1335.
pmid: 4975474
[21] 李凤, 徐刚, 贺行良, 等. 东海近岸表层沉积物中正构烷烃的组成、分布及来源分析[J]. 海洋环境科学, 2016, 35(3):398-403.
[21] Li F, Xu G, He X L, et al. Composition,distribution and source of N-alkanes in surface sediments from the coast of East China Sea[J]. Marine Environmental Science, 2016, 35(3):398-403.
[22] 邝伟明, 陈文锋, 陈金民. 厦门海域正构烷烃组成特征及石油烃污染情况研究[J]. 海洋环境科学, 2017, 36(1):76-80.
[22] Kuang W M, Chen W F, Chen J M. The characteristic parameters of N-alkanes and petroleum pollution of Xiamen bay[J]. Marine Environmental Science, 2017, 36(1):76-80.
[23] 李胜勇, 邓伟, 张大海, 等. 渤海及邻近海域表层沉积物中烃类物质的分布特征及其指示意义[J]. 海洋环境科学, 2017, 36(4):501-508.
[23] Li S Y, Deng W, Zhang D H, et al. Distribution and its indication significance of hydrocarbons in surface sediments from Bohai Sea and adjacent area[J]. Marine Environmental Science, 2017, 36(4):501-508.
[24] Xiao B, Han Y, Liu J. Evaluation of biohydrogen production from glucose and protein at neutral initial pH[J]. International Journal of Hydrogen Energy, 2010, 35(12):6152-6160.
doi: 10.1016/j.ijhydene.2010.03.084
[25] Li J Z, Zheng G C, He J G, et al. Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor[J]. Biotechnology Advances, 2009, 27(5):573-577.
doi: 10.1016/j.biotechadv.2009.04.007 pmid: 19393312
[26] Duan Y. Organic geochemistry of recent marine sediments from the Nansha Sea,China-Science direct[J]. Organic Geochemistry, 2000, 31(2/3):159-167.
doi: 10.1016/S0146-6380(99)00135-7
[27] Guo W, He M, Yang Z, et al. Characteristics of petroleum hydrocarbons in surficial sediments from the Songhuajiang River (China):Spatial and temporal trends[J]. Environmental Monitoring & Assessment, 2011, 179(1-4):81-92.
[28] 李从玲. 近代海洋沉积物(层)中姥鲛烷/植烷比值及其地球化学意义[J]. 海洋地质与第四纪地质, 1990, 10(4):77-88
[28] Li C L. Pristane/phytane ratio in recent marine sediment (sedimentary layer) and its geochemical significance[J]. Marine Geology & Quaternary Geology, 1990, 10(4):77-88.
[29] Ten H H L, De L J W, Rullkotter J, et al. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator[J]. Nature, 1987, 330(6149):641-643.
doi: 10.1038/330641a0
[30] 韩喜彬, 赵军, 初凤友, 等. 南极半岛东北海域表层沉积有机质来源及其沉积环境[J]. 海洋学报, 2015, 37(8):26-38.
[30] Han X B, Zhao J, Chu F Y, et al. The source of organic matter and its sedimentary environment of the bottomsurface sediment in northeast waters to Antarctic Peninsulabased on the biomarker features[J]. Acta Oceanologica Sinica, 2015, 37(8):26-38.
doi: 10.1007/s13131-018-1279-0
[1] 白洋, 陈开旭, 陈冲, 李福林, 张继纯, 魏凌霄, 司可夫, 郑雄伟, 胡云飞, 吴颖, 张元培. 利比里亚Harper地区水系沉积物地球化学特征及找矿方向[J]. 物探与化探, 2024, 48(2): 382-392.
[2] 蔡柯柯, 赵志强, 蒙丽, 王孝萌, 刘键, 罗仁凤. 重庆市秀山县北部大气干湿沉降重金属元素分布特征及来源分析[J]. 物探与化探, 2024, 48(1): 237-244.
[3] 徐磊, 李俊, 瞿镪, 文方平, 赵萌生, 程琰勋, 徐杰, 王浩宇. 滇中中高山丘陵区大气干湿沉降元素地球化学特征及来源解析[J]. 物探与化探, 2023, 47(6): 1602-1610.
[4] 万太平, 张丽, 刘汉粮. 黑龙江省额尔古纳地块战略性矿产锑区域地球化学特征及远景区预测[J]. 物探与化探, 2023, 47(5): 1179-1188.
[5] 杨婵, 吴娟娟, 车旭曦, 岳思羽, 刘智峰, 宋凤敏. 汉江上游水体沉积物污染状况分析与评价[J]. 物探与化探, 2023, 47(5): 1361-1370.
[6] 张嘉升, 周伟, 李伟良, 祁晓鹏, 杨杰, 王璐. 陕西简池镇地区1∶2.5万水系沉积物测量地球化学特征及找矿潜力[J]. 物探与化探, 2023, 47(3): 659-669.
[7] 宋运红, 杨凤超, 刘凯, 戴慧敏, 许江, 韩晓萌. 黑龙江省海伦地区黑土剖面常量元素地球化学特征及其对物源的指示意义[J]. 物探与化探, 2022, 46(5): 1105-1113.
[8] 徐雄, 孙艳亭, 肖方, 肖培平, 董应尚, 李敏. 菏泽市水系沉积物重金属特征及风险评估[J]. 物探与化探, 2022, 46(4): 1021-1029.
[9] 阎琨, 庞国涛, 李伟, 毛方松. 广西茅尾海入海河口表层沉积物重金属分布及风险评价[J]. 物探与化探, 2022, 46(4): 1030-1036.
[10] 张凯涛, 白德胜, 李俊生, 刘纪峰, 许栋, 苏阳艳, 樊康. 豫西合峪—车村地区萤石矿床地质特征及物质来源研究进展[J]. 物探与化探, 2022, 46(4): 787-797.
[11] 邢润华. 安徽省宣城市土壤硒地球化学特征及成因分析[J]. 物探与化探, 2022, 46(3): 750-760.
[12] 李生清. 海河流域沉积物重金属形态分布特征及生态风险评估[J]. 物探与化探, 2022, 46(3): 781-786.
[13] 侯佳渝, 杨耀栋, 程绪江. 天津市城区不同功能区绿地土壤重金属分布特征及来源研究[J]. 物探与化探, 2021, 45(5): 1130-1134.
[14] 肖高强, 向龙洲, 代达龙, 高晓红, 宗庆霞. 花岗质岩浆岩土壤重金属地球化学特征及生态风险评价——以云南盈江旧城—姐冒地区为例[J]. 物探与化探, 2021, 45(5): 1135-1146.
[15] 徐云峰, 郝雪峰, 秦宇龙, 王显锋, 熊昌利, 李名则, 武文辉, 詹涵钰. 四川岔河地区水系沉积物地球化学特征及找矿方向[J]. 物探与化探, 2021, 45(3): 624-638.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com