Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1105-1113    DOI: 10.11720/wtyht.2022.0040
  东北黑土地地球化学调查专栏 本期目录 | 过刊浏览 | 高级检索 |
黑龙江省海伦地区黑土剖面常量元素地球化学特征及其对物源的指示意义
宋运红1,2,3(), 杨凤超1(), 刘凯1,2,3, 戴慧敏1,2,3, 许江1,2,3, 韩晓萌1,2,3
1.中国地质调查局 沈阳地质调查中心,辽宁 沈阳 110034
2.自然资源部 黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
3.辽宁省黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
Geochemical characteristics of major elements in the black soil profiles of the Hailun area, Heilongjiang Province and their implications for provenance
SONG Yun-Hong1,2,3(), YANG Feng-Chao1(), LIU Kai1,2,3, DAI Hui-Min1,2,3, XU Jiang1,2,3, HAN Xiao-Meng1,2,3
1. Shenyang Center of China Geological Survey, Shenyang 110034, China
2. Key Laboratory for Evolution and Ecological Effect in Black Land, Ministry of Natural Resources, Shenyang 110034, China
3. Key Laboratory for Evolution and Ecological Effect in Black Land of Liaoning Province, Shenyang 110034, China
全文: PDF(2415 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

黑土剖面中常量元素及其比值的地球化学特征与土壤的形成和发育有很大的关系,既反映了土壤发生、发育的程度,又反映了物源区的环境变化,是松嫩平原环境演化和气候变化的重要地质记录。为了探讨东北典型黑土的成因、成土母质来源以及化学风化的强度,选择具有代表性的海伦地区9条黑土剖面进行了常量元素分析,并与典型风成堆积物的元素地球化学特征进行对比,结果表明:①海伦黑土剖面主要常量元素(SiO2、Al2O3、Fe2O3)之和以及UCC标准化曲线均与典型风成堆积物具有较好的相似性,表明海伦典型黑土成土母质可能为风成成因;②化学蚀变指数CIA值平均为63.97,CIAw(Na)/w(K)图解均显示属于初等化学风化程度,与典型风成堆积物相比,风化强度顺序为:哈尔滨荒山黄土>镇江下蜀土>西峰红黏土>海伦黑土≈洛川黄土;③ 0~30 cm黑土比30 cm以下的黑土具有更高的w(SiO2)/w(TiO2)、w(SiO2)/w(Al2O3)比值,说明晚期海伦典型黑土粒度较粗,石英含量较高。元素地球化学特征显示,表层和深层典型黑土的气候环境及物源可能并不完全一致,在30 cm左右发生了变化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋运红
杨凤超
刘凯
戴慧敏
许江
韩晓萌
关键词 海伦典型黑土常量元素成土母质来源化学风化强度地球化学    
Abstract

The geochemical characteristics of the major elements in the black soil profiles and their ratios are closely related to the formation and development of the soil. They reflect the degree of the formation and development of soil as well as the environmental changes in the provenance areas. Moreover, they are important geological records of environmental evolution and climate change in the Songnen Plain. To explore the origin, provenance, and chemical weathering intensity of the typical black soil in northeast China, this study analyzed the major elements of nine representative black soil profiles in the Hailun area and then compared these elements with the element geochemical characteristics of typical aeolian deposits. The results are as follows. ①The sum of the content of the major elements (SiO2, Al2O3, and Fe2O3) and the UCC standardized curve of the Hailun black soil profiles were highly similar to those of typical aeolian deposits, indicating that the typical black soil in Hailun is aeolian; ②The average chemical index of alteration (CIA) was 63.97. The CIA-Na/K diagrams all indicated a low degree of chemical weathering. By comparison with the weathering intensity of typical aeolian deposits, the weathering intensity of the soil was in the order of loess in Huangshan, Harbin > loess in Xiashu, Zhenjiang > red clay in Xifeng > black soil in Hailun≈loess in Luochuan; ③The black soil at a depth of 0~30 cm has higher w(SiO2)/w(TiO2) and w(SiO2)/w(Al2O3) ratios than the black soil below 30 cm, indicating that the late typical black soil in Hailun has a coarser grain size and higher quartz content. The geochemical characteristics of the major elements indicate that the typical black soil in the surface layer and the deep layer may not have the same climate, environment, and provenance conditions, which may change at a depth of approximately 30 cm.

Key wordstypical black soil in Hailun    major elements    provenance    chemical weathering intensity    geochemistry
收稿日期: 2022-01-27      修回日期: 2022-05-11      出版日期: 2022-10-20
ZTFLH:  P595  
基金资助:中国地质调查局项目“松辽平原黑土地生态地质调查”(DD20221779);“兴凯湖平原及松辽平原西部土地质量地球化学调查”(DD20190520)
通讯作者: 杨凤超
作者简介: 宋运红(1983-),女,2009年毕业于吉林大学,硕士,高级工程师,地球化学专业,主要从事黑土地形成与演化研究工作。Email:yunhong408@163.com
引用本文:   
宋运红, 杨凤超, 刘凯, 戴慧敏, 许江, 韩晓萌. 黑龙江省海伦地区黑土剖面常量元素地球化学特征及其对物源的指示意义[J]. 物探与化探, 2022, 46(5): 1105-1113.
SONG Yun-Hong, YANG Feng-Chao, LIU Kai, DAI Hui-Min, XU Jiang, HAN Xiao-Meng. Geochemical characteristics of major elements in the black soil profiles of the Hailun area, Heilongjiang Province and their implications for provenance. Geophysical and Geochemical Exploration, 2022, 46(5): 1105-1113.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.0040      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1105
Fig.1  海伦地区典型黑土剖面采样位置
剖面号 参数 SiO2 Al2O3 Fe2O3 K2O Na2O MgO CaO TiO2 CIA
PM1901
n=7
最小值 65.51 13.53 4.57 2.51 1.71 1.22 1.25 0.77 60.80
最大值 66.51 15.21 5.41 2.61 1.79 1.54 1.52 0.81 65.03
平均值 66.05 14.67 5.10 2.56 1.75 1.40 1.33 0.80 63.62
PM1902
n=7
最小值 65.51 13.83 4.69 2.5 1.74 1.24 1.28 0.77 61.68
最大值 66.32 15.26 5.50 2.6 1.84 1.57 1.44 0.80 64.77
平均值 65.98 14.77 5.21 2.54 1.78 1.44 1.35 0.80 63.57
PM1903
n=10
最小值 65.34 13.96 4.72 2.49 1.74 1.29 1.30 0.77 61.78
最大值 66.62 15.14 5.40 2.73 1.96 1.57 1.47 0.80 73.05
平均值 65.75 14.83 5.15 2.59 1.83 1.46 1.35 0.79 66.42
PM1904
n=7
最小值 65.77 13.71 4.53 2.52 1.80 1.23 1.27 0.77 60.67
最大值 66.61 15.01 5.38 2.6 1.88 1.49 1.53 0.80 63.83
平均值 66.19 14.46 5.01 2.54 1.83 1.37 1.37 0.79 62.72
PM1907
n=11
最小值 65.52 13.78 4.53 2.51 1.70 1.24 1.19 0.78 61.69
最大值 66.17 15.09 5.50 2.68 1.81 1.48 1.42 0.81 65.31
平均值 65.89 14.72 5.17 2.55 1.75 1.39 1.28 0.80 63.94
PM1908
n=10
最小值 65.56 14.02 4.46 2.54 1.69 1.20 1.21 0.78 62.17
最大值 66.27 15.07 5.44 2.62 1.91 1.58 1.37 0.81 64.56
平均值 65.93 14.69 5.08 2.58 1.80 1.42 1.28 0.80 63.61
PM1909
n=9
最小值 65.43 13.42 4.62 2.47 1.59 1.23 1.24 0.76 60.55
最大值 66.69 14.73 5.26 2.66 1.97 1.35 1.64 0.81 63.94
平均值 66.14 14.18 4.92 2.59 1.77 1.28 1.43 0.79 62.31
PM1910
n=10
最小值 65.67 13.67 4.64 2.53 1.71 1.24 1.17 0.78 60.47
最大值 66.87 15.07 5.38 2.61 1.95 1.49 1.47 0.82 65.29
平均值 66.24 14.57 5.12 2.58 1.84 1.39 1.24 0.80 63.40
PM1921
n=10
最小值 65.9 13.25 4.29 2.52 1.75 1.15 1.15 0.77 60.58
最大值 67.87 14.86 5.39 2.71 2.01 1.57 1.39 0.82 63.61
平均值 66.58 14.38 5.07 2.61 1.93 1.41 1.27 0.80 62.44
荒山黄土
n=62
最小值 55.74 16.98 3.03 2.75 1.51 1.56 0.72
最大值 66.70 21.97 4.85 3.19 2.45 2.07 1.01
平均值 60.85 19.47 4.22 3.00 1.84 1.88 0.87 74.66
洛川黄土
n=12
平均值 66.4 14.2 4.81 3.01 1.66 2.29 1.02 63.73
镇江下蜀
n=54
平均值 68.07 13.32 5.3 2.35 0.92 1.61 1 70.45
西峰红黏
n=5
平均值 63.75 15.05 5.28 3 1.16 2.89 0.9 69.11
上陆壳
(UCC)
平均值 66.00 15.20 5.00 3.40 3.90 2.20 4.20 47.92
Table 1  海伦典型黑土剖面及其他地区典型风成堆积物的常量元素含量
Fig.2  海伦黑土剖面常量元素分布特征
指标 SiO2 Al2O3 TFe2O3 MgO CaO Na2O K2O
SiO2 1
Al2O3 -0.865** 1
TFe2O3 -0.894** 0.984** 1
MgO -0.917** 0.949** 0.973** 1
CaO 0.578** -0.888** -0.823** -0.747** 1
Na2O -0.654** 0.398 0.412** 0.583** -0.132** 1
K2O -0.638** 0.479 0.546 0.667 -0.111** 0.755 1
Table 2  海伦黑土剖面常量元素含量相关系数
Fig.3  海伦黑土成土母质与其他风成堆积物常量元素的UCC标准化曲线分布模式
Fig.4  海伦黑土成土母质化学风化参数CIAw(Na)/w(K)关系散点图(a)以及w(Na)/w(K)(b)、CIA(c)随深度变化特征
Fig.5  海伦黑土成土母质的w(TiO2)/w(Al2O3)—w(SiO2)/w(Al2O3) (a)和w(TiO2)/w(Al2O3)—w(SiO2)/w(TiO2) (b)图解
[1] Powlson D S, Gregory P J, Whalley W R, et al. Soil management in relation to sustainable agriculture and ecosystem services[J]. Food Policy, 2011, 36:72-87.
[2] 宋运红, 刘凯, 戴慧敏, 等. 东北松辽平原35年来耕地土壤全氮时空变化最新报道[J], 中国地质, 2021, 48(1):332-333.
[2] Song Y H, Liu K, Dai H M, et al. Spatio-temporal variation of total N content in farmland soil of Songliao Plain in Northeast China during the past 35 years[J]. Geology in China, 2021, 48(1):332-333.
[3] Song Y H, Dai H M, Yang F C, et al. A preliminary study on soil degradation and nutrient imbalance of typical black soil in Northeast China[C]// Proceedings of the 6th Academic Conference of Geology Resource Management and Sustainable Development, 2018:328-335.
[4] 宋运红, 刘凯, 戴慧敏, 等. 松嫩平原东部典型黑土剖面孢粉组合及其时代和古气候意义[J]. 地质通报, 2020a, https://kns.cnki.net/kcms/detail/11.4648.P.20201015.0930.002.html.
[4] Song Y H, Liu K, Dai H M, et al. Palynological Assemblages of typical black soil profile in the eastern Songliao Plain and their Age and Paleoclimatic Significances[J]. Geological Bulletin of China, 2020a, https://kns.cnki.net/kcms/detail/11.4648.P.20201015.0930.002.html.
[5] 宋运红, 刘凯, 戴慧敏, 等. 东北松辽平原典型黑土—古土壤剖面AMS14C年龄首次报道[J]. 中国地质, 2020, 47(6):1926-1927.
[5] Song Y H, Liu K, Dai H M, et al. The first reported of the AMS14C age of typical black soil mollisol—Paleosol profile of Songliao Plain[J]. Geology in China, 2020, 47(6):1926-1927.
[6] 张新荣, 平帅飞, 焦洁钰, 等. 松嫩平原南缘现代沉积物磁化率、粒度、色度特征及古气候环境意义[J]. 吉林大学学报:地球科学版, 2020, 50(2):465-479.
[6] Zhang X R, Ping S F, Jiao J Y, et al. Characteristics of magentic susceptibility,grain size and chromaticity of modern sedimentsin the southern margin of Songnen Plain and their paleoclimate environment significance[J]. Journal of Jlilin University:Earth Science Edition, 2020, 50(2):465-479.
[7] 宋运红, 张哲寰, 杨凤超, 等. 黑龙江海伦地区垦殖前后典型黑土剖面主要养分元素垂直分布特征[J]. 地质与资源, 2020, 26(6):543-549.
[7] Song Y H, Liu Z K, Yang F C, et al. Vertical distribution characteristics of main nutrient elements in typical black soil profile before and after reclamation in Helun Area,Heilongjiang Province[J]. Geology and Resources, 2020, 26(6):543-549.
[8] Song Y H, Dai H M, Yang F C, et al. Temporal and spatial change of soil organic matter and pH in cultivated land of the Songliao Plain in Northeast China during the past 35 years[J]. Acta Geologica Sinica:English Edition, 2019, 93(S1):142-143.
[9] 史文娇, 汪景宽, 魏丹, 等. 黑龙江省南部黑土区微量元素空间变异及影响因子——以双城市为例[J]. 土壤学报, 2009, 46(2):342-347.
[9] Shi W J, Wang J K, Wei D, et al. Spatial variability of soil trace elements in black soil region of south Heilongjiang province and its affecting factors:A case study of Shuangcheng city[J]. Acta pedologica sinica, 2009, 46(2):342-347.
[10] 贾树海, 张佳楠, 张玉玲, 等. 东北黑土区旱田改稻田后土壤有机碳、全氮的变化特征[J]. 中国农业科学, 2017, 50(7):1252-1262.
[10] Jia S H, Zhang J N, Zhang Y L, et al. Changes of the characteristics of soil organic carbon and total nitrogen after conversation from upland to paddy field in black soil region of Northeast China[J]. Scientia Agricultura Sinica, 2017, 50(7):1252-1262.
[11] 韩晓增, 李娜. 中国东北黑土地研究进展与展望[J]. 地理科学, 2018, 38(7):1032-1041.
doi: 10.13249/j.cnki.sgs.2018.07.004
[11] Han X Z, Li N. Research progress of black soil in Northeast China[J]. Scientia Geographica Sinica, 2018, 38(7):1032-1041.
doi: 10.13249/j.cnki.sgs.2018.07.004
[12] 崔明, 张旭东, 蔡强国, 等. 东北典型黑土区气候、地貌演化与黑土发育关系[J]. 地理研究, 2008, 27(3):527-535.
[12] Cui M, Zhang X D, Cai Q G, et al. Relationship between black soil development and climate change and geomorphological evolution in Northeast China[J]. Geographical Research, 2008, 27(3):527-535.
doi: 10.11821/yj2008030006
[13] 綦琳, 乔彦松, 王燕, 等. 南京下蜀土的地球化学特征及其物源指示意义[J]. 第四纪研究, 2020, 40(1):190-202.
[13] Qi L, Qiao Y S, Wang Y, et al. Geochemical characteristics of the Xiashu loess-palaeosol sequence in Nanjing and their implicationa for provence[J]. Quaternary Sciences, 2020, 40(1):190-202.
[14] 陈立业, 张珂, 傅建利, 等. 邙山黄土L5以来的常量元素地球化学特征及其对物源的指示意义[J]. 第四纪研究, 2017, 37(6):1293-1308.
[14] Chen L Y, Zhang K, Fu J L, et al. Major element geochemical characteristics of Mangshan loess since L5 and its implications for provenance[J]. Quaternary Sciences, 2017, 37(6):1293-1308.
[15] Hao Q Z, Guo Z T, Qiao Y S, et al. Geochemical evidence for the provenance of Middle Pleistocene loess deposits in Southern China[J]. Quaternary Science Reviews, 2010, 29(23/24):3317-3326.
doi: 10.1016/j.quascirev.2010.08.004
[16] Guan H C, Zhu C, Zhu T X, et al. Grain size,magnetic susceptibility and geochemical characteristics of the loess in the Chaohu Lake basin: Implications for the origin,palaeoclimatic change and provenance[J]. Journal of Asian Earth Sciences, 2016, 117: 170-183.
doi: 10.1016/j.jseaes.2015.12.013
[17] Li Y, Song Y G, Chen X L, et al. Geochemical composition of Tajikistan loess and its provenance implications[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2016, 446: 186-194.
doi: 10.1016/j.palaeo.2016.01.025
[18] Zhang L, Qin X G, Liu J Q, et al. Geochemistry of sediments from the Huaibei Plain (East China):Implications for provenance,weathering,and invasion of the Yellow River into the Huaihe River[J]. Journal of Asian Earth Sciences, 2016, 121:72-83.
doi: 10.1016/j.jseaes.2016.02.008
[19] 吴鹏, 谢远云, 康春国, 等. 哈尔滨荒山黄土的成因——粒度、地球化学、磁化率、沉积和地貌特征的整合记录[J]. 地球学报, 2020, 41(3):420-430.
[19] Wu P, Xie Y Y, Kang C G, et al. The genesis of Huangshan loess in Harbin: Integrated evidence from grain size,geochemistry,magnetization,sedimentation and landform[J]. Acta Geoscientica Sinica, 2020, 41(3):420-430.
[20] 陈骏, 季峻峰, 仇纲, 等. 陕西洛川黄土化学风化程度的地球化学研究[J]. 中国科学:地球科学, 1997, 27(6):531-536.
[20] Chen J, Ji J F, Chou G, et al. Geochemical study on chemical weathering degree of loess in Luochuan,Shaanxi Province[J]. Science in China(Series D):Earth Sciences, 1997, 27(6):531-536.
[21] Chen Y Y, Li X S, Han Z Y, et al. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang,Jiangsu Province[J]. Journal of Geographical Sciences, 2008, 18(3):341-352.doi:10.1007/s11442-008-0341-9.
doi: 10.1007/s11442-008-0341-9
[22] 陈旸, 陈骏, 刘连文. 甘肃西峰晚第三纪红粘土的化学组成及化学风化特征[J]. 地质力学学报, 2001, 7(2):167-175.
[22] Chen Y, Chen J, Liu L W. Chemical composition and characterization of chemical weathering of late tertiary red clay in Xifeng,Gansu Province[J]. Journal of Geomechanics, 2001, 7(2):167-175.
[23] 毛欣, 刘林敬, 李长安, 等. 丰宁黄土—古土壤剖面常量元素地球化学特征[J]. 地球科学, 2017, 42(10):1750-1759.
[23] Mao X, Liu L J, Li C A, et al. Elemental composition features of loess-paleosol profile in Fengning,Hebei Provinc[J]. Earth Science, 2017, 42(10):1750-1759.
[24] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2):295-303.
doi: 10.1086/648222
[25] 韩晓萌, 戴慧敏, 梁帅, 等. 黑龙江省拜泉地区典型黑土剖面元素地球化学特征及其环境指示意义[J]. 地质与资源, 2020, 29(6):556-563.
[25] Han X M, Dai H M, Liang S, et al. Elemental geochemistry characteristics and environmental indication of typical black soil profile in Baiquan Area,Heilongjiang Province[J]. Geology and Resources, 2020, 29(6):556-563.
[26] 王攀, 宁凯, 石迎春, 等. 吴起全新世土壤剖面常量元素地球化学特征[J]. 土壤通报, 2019, 50(6):1261-1268.
[26] Wang P, Ning K, Shi Y C, et al. Geochemical characteristics of major elements of holocene soil from Wuqi,Shaanxi Province[J]. Chinese Journal of Soil Science, 2019, 50(6): 1261-1268.
[27] 徐树建, 倪志超, 丁新潮. 山东平阴黄土剖面常量元素地球化学特征[J]. 矿物岩石地球化学通报, 2016, 35(2):353-359.
[27] Xu S J, Ni Z C, Ding X C. Geochemical characteristics of major elements of the Pingyin loess in Shandong Province[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2016, 35(2):353-359.
[28] Blanca B, Maria J M, Constanza F N, et al. Geochemistry of precambrian and paleozoic siliciclastic rocks from the iberian range(NE Spain):Implications for source-area weathering,sorting,provenance,and tectonic setting[J]. Chemical Geology, 2000, 168(1):135-150.doi:10.1016/S0009-2541(00)00192-3.
doi: 10.1016/S0009-2541(00)00192-3
[29] 文启忠. 中国黄土地球化学[M]. 北京: 科学出版社, 1989:71-133.
[29] Wen Q Z. Loess geochemistry in China[M]. Beijing: Science Press, 1989:71-133.
[30] 李欢, 黄勇, 张沁瑞, 等. 北京平原区土壤地球化学特征及影响因素分析[J]. 物探与化探, 2021, 45(2):502-516.
[30] Li H, Huang Y, Zhang Q R, et al. Soil geochemical characteristics and influencing factors in Beijing Plain[J]. Geophysical and Geochemical Exploration, 2021, 45(2):502-516.
[31] 刘银飞, 孙彬彬, 贺灵, 等. 福建龙海土壤垂向剖面元素分布特征[J]. 物探与化探, 2016, 40(4): 713-721.
[31] Liu Y F, Sun B B, H L, et al. Distribution characteristics of elements in vertical soil profile in Longhai,Fujian province[J]. Geophysical and Geochemical Exploration, 2016, 40(4): 713-721.
[32] Gallet S, Jahn B, Torii M. Geochemical characterizati0n of the Luochuan loess paleosol sequence,China,and paleoclimatic implications[J]. Chemical Geology, 1996, 133(14):67-88.
doi: 10.1016/S0009-2541(96)00070-8
[33] Chen J, An Z S, Liu L W, et al. Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over past 2.5Ma and chemical weathering in the Asian inland[J]. Science in China (Series D):Earth Sciences, 2001, 44(5):403-413.
[34] 顾兆炎, 丁仲礼, 熊尚发, 等. 灵台红粘土和黄土—古土壤序列的地球化学演化[J]. 第四纪研究, 1999, 19(4):357-365.
[34] Gu Z Y, Ding Z L, Xiong S F, et al. A seven million geochemical record from Chinese red-clay and loess-paleosol sequence:Weathering and erosion in northwestern China[J]. Quaternary sciences, 1999, 19(4):357-365.
[35] Yang L H, Zhou J, Lai Z P, et al. Lateglacial and Holocene dune evolution in the Horqin dunefield of northeastern China based on luminescence dating[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2010, 296:44-51.
doi: 10.1016/j.palaeo.2010.06.014
[36] Peng S Z, Guo Z T. Geochemical indicator of original eolian grain size and implications on winter monsoon evolution[J]. Science in China (Series D):Earth Sciences, 2001, 44(1): 261-266.
[37] Xiao J L, Porter S C, An Z S, et al. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of Central China during the last 130,000 yr[J]. Quaternary Research, 1995, 43(1):22-29.
doi: 10.1006/qres.1995.1003
[38] An Z S, Porter S C. Millennia1 scale climatic oscillations during the last interglaciation in Central China[J]. Geology, 1997, 25(7):603-606.
doi: 10.1130/0091-7613(1997)025<0603:MSCODT>2.3.CO;2
[39] Chen J, Li G. Geochemical studies on the source region of asian dust[J]. Science China Earth Sciences, 2011, 54(9):1279-1301.doi:10.1007/s11430-011-4269-z.
doi: 10.1007/s11430-011-4269-z
[1] 万太平, 张丽, 刘汉粮. 黑龙江省额尔古纳地块战略性矿产锑区域地球化学特征及远景区预测[J]. 物探与化探, 2023, 47(5): 1179-1188.
[2] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[3] 郑旭莹, 许科伟, 顾磊, 王国建, 李广之, 郭嘉琪, 邹雨, 腾格尔. 典型地热田环境微生物分布特征及其勘探意义[J]. 物探与化探, 2023, 47(5): 1127-1136.
[4] 万卫, 汪明启, 程志中, 范会虎, 左立波, 李俊辉. CO2、SO2气体地球化学测量方法在森林覆盖区找矿的试验研究[J]. 物探与化探, 2023, 47(5): 1137-1146.
[5] 向文帅, 白洋, 姜军胜, 雷义均, HUNDIE Melka, SISAY Degu, 张元培, 吴颖, 郑雄伟. 地球化学块体法在埃塞俄比亚铜矿资源评价中的应用[J]. 物探与化探, 2023, 47(4): 845-855.
[6] 杨星, 管育春, 邹滔, 李伟. 综合土壤和重砂测量在内蒙古扎鲁特旗坤得来扎拉格地区锡多金属找矿中的应用[J]. 物探与化探, 2023, 47(4): 868-880.
[7] 保善东, 谢祥镭, 王亚栋, 徐云甫, 张新远, 曾彪. 寒冷半干旱草原景观大比例尺微沟系测量样品粒级试验——以锲墨格山锂铍稀有矿为例[J]. 物探与化探, 2023, 47(3): 648-658.
[8] 张嘉升, 周伟, 李伟良, 祁晓鹏, 杨杰, 王璐. 陕西简池镇地区1∶2.5万水系沉积物测量地球化学特征及找矿潜力[J]. 物探与化探, 2023, 47(3): 659-669.
[9] 李俊俊, 魏宇, 张庆松, 王维华, 柳维, 向亮. 四川马头金矿区土壤地球化学测量异常特征及找矿模型[J]. 物探与化探, 2023, 47(2): 309-320.
[10] 魏振宏, 赵吉昌, 曲正钢, 樊新祥, 李省晔, 陈海云, 刘永彪, 杨镇熙. 浅钻地球化学测量在甘肃北山南金山金矿外围浅覆盖区的应用[J]. 物探与化探, 2023, 47(2): 331-342.
[11] 陈熙, 安朝, 张文权, 徐云甫, 马瑛, 史连昌, 陶志华. 柴北缘中段地球化学特征及铬的成矿潜力评价[J]. 物探与化探, 2023, 47(2): 353-364.
[12] 王磊, 卓小雄, 吴天生, 凌胜华, 钟晓宇, 赵晓孟. 调查评价的土壤元素累积趋势预测——以广西南宁市西乡塘区为例[J]. 物探与化探, 2023, 47(1): 1-13.
[13] 李沐思, 陈丽蓉, 谢飞, 谷兰丁, 吴晓栋, 马芬, 尹兆峰. 面向地球化学异常识别的深度学习算法对比研究[J]. 物探与化探, 2023, 47(1): 179-189.
[14] 王志强, 杨建锋, 石天池. 宁夏石嘴山地区富硒土壤及其利用前景[J]. 物探与化探, 2023, 47(1): 228-237.
[15] 肖睿, 庞守吉, 祝有海, 张帅, 邹燚. 新疆甜水海地区红山湖泉水化学特征及其意义[J]. 物探与化探, 2023, 47(1): 39-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com