Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (6): 1402-1410    DOI: 10.11720/wtyht.2025.1492
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于SMOTE-LSTM算法的测井岩性识别研究
黄亮1(), 陈炫沂2, 姜振蛟1(), 王金鑫1, 张晨雨1, 宋根发1
1.吉林大学 新能源与环境学院, 吉林 长春 130021
2.中国长江电力股份有限公司, 湖北 武汉 100032
Log-based lithology identification using the SMOTE-LSTM hybrid model
HUANG Liang1(), CHEN Xuan-Yi2, JIANG Zhen-Jiao1(), WANG Jin-Xin1, ZHANG Chen-Yu1, SONG Gen-Fa1
1. College of New Energy and Environment, Jilin University, Changchun 130021, China
2. China Yangtze Power Co., Ltd., Wuhan 100032, China
全文: PDF(3253 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

发展人工智能算法,从多元测井数据中自动识别地层岩性空间结构,是节约岩性编录成本、降低岩性识别主观性的趋势性途径。针对岩性样本数据分布不均匀、测井属性与岩性之间关系的时空多变性问题,本文构建了SMOTE(过采样算法)-LSTM(长短期记忆网络)混合模型,通过SMOTE算法有效平衡不同岩性类别的样本分布,并融合LSTM算法的深度学习架构,实现测井序列数据中岩性特征的提取,在砂岩型铀矿区进行应用,模型以钻孔测井数据和岩性记录为训练数据,训练后岩性分类预测准确率超过85%,与多种机器学习方法对比,岩性识别准确性和可靠性显著提升。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄亮
陈炫沂
姜振蛟
王金鑫
张晨雨
宋根发
关键词 岩性识别长短期记忆(LSTM)神经网络测井    
Abstract

Artificial intelligence algorithms have been developed to automatically identify the spatial structures of formation lithologies from multivariate log data. They represent a promising approach to reducing lithology logging costs and mitigating the subjectivity inherent in lithology identification. Considering the imbalanced distribution of lithology sample data and the spatialtemporal variability in the relationships between log attributes and lithologies, this study constructed a synthetic minority oversampling technique (SMOTE)-long short-term memory (LSTM) hybrid model. The SMOTE algorithm effectively balances the sample distributions of different lithologies, while the LSTM algorithm, using its deep learning architecture, extracts lithological characteristics from the log sequence data. With the borehole log data and lithology records from a sandstone uranium deposit as training data, the SMOTE-LSTM hybrid model achieved a prediction accuracy exceeding 85% in lithology classification. Compared to several other machine learning methods, the SMOTE-LSTM hybrid model demonstrated significantly improved accuracy and reliability in lithology identification.

Key wordslithology identification    long short-term memory (LSTM) neural network    log
收稿日期: 2024-12-26      修回日期: 2025-03-28      出版日期: 2025-12-20
ZTFLH:  P631  
基金资助:测井数据、岩心数据的融合处理软件开发项目(HYY-DJ-KY-J-2023-115)
通讯作者: 姜振蛟
引用本文:   
黄亮, 陈炫沂, 姜振蛟, 王金鑫, 张晨雨, 宋根发. 基于SMOTE-LSTM算法的测井岩性识别研究[J]. 物探与化探, 2025, 49(6): 1402-1410.
HUANG Liang, CHEN Xuan-Yi, JIANG Zhen-Jiao, WANG Jin-Xin, ZHANG Chen-Yu, SONG Gen-Fa. Log-based lithology identification using the SMOTE-LSTM hybrid model. Geophysical and Geochemical Exploration, 2025, 49(6): 1402-1410.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1492      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I6/1402
Fig.1  研究区域测井位置分布示意(a)、测井数据频率分布(b)与测井间相关系数分布(c)
Fig.2  SMOTE-LSTM算法流程示意与主要机器学习算法对比
Fig.3  SMOTE-LSTM模型训练集、验证集准确率随(a)LSTM网络层层数、(b)优化器种类、(c)隐藏层神经单元数、(d)Batch size参数变化趋势
Fig.4  模型训练集与验证集的准确率趋势(a)和模型混淆矩阵分类结果(b)
Fig.5  测试井经SMOTE算法处理前后准确率对比
Fig.6  岩性识别算法模型准确率、精确率对比(a)和对比模型十折交叉验证结果(b)
Fig.7  BC-10号测试井预测岩性与真实岩性对比
岩性 精确率/% 准确率/% 数目
泥岩粉砂质泥岩 88 87 267
含砾细砂岩 62 77 167
砂砾岩含砾中砂岩 96 88 425
权重平均 87 85 859
Table 1  SMOTE-LSTM联合模型预测结果参数特征
[1] 许振浩, 马文, 李术才, 等. 岩性识别:方法、现状及智能化发展趋势[J]. 地质论评, 2022, 68(6):2290-2304.
[1] Xu Z H, Ma W, Li S C, et al. Lithology identification: Method,research status and intelligent development trend[J]. Geological Review, 2022, 68(6):2290-2304.
[2] 安鹏, 曹丹平. 基于深度学习的测井岩性识别方法研究与应用[J]. 地球物理学进展, 2018, 33(3):1029-1034.
[2] An P, Cao D P. Research and application of logging lithology identification based on deep learning[J]. Progress in Geophysics, 2018, 33(3):1029-1034.
[3] Antariksa G, Muammar R, Lee J. Performance evaluation of machine learning-based classification with rock-physics analysis of geological lithofacies in Tarakan Basin,Indonesia[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109250.
[4] 范宜仁, 黄隆基, 代诗华. 交会图技术在火山岩岩性与裂缝识别中的应用[J]. 测井技术, 1999(1):53-56,64.
[4] Fan Y R, Huang L J, Dai S H. Application of crossplot technique to the determination of lithology composition and fracture identification of igneous rock[J]. Well Logging Technology, 1999(1):53-56,64.
[5] Moscatelli M, Piscitelli S, Piro S, et al. Integrated geological and geophysical investigations to characterize the anthropic layer of the Palatine hill and Roman Forum[J]. Bulletin of Earthquake Engineering, 2014, 12(3):1319-1338.
[6] Sun J J, Li Y G. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering[J]. Geophysics, 2015, 80(4):ID1-ID18.
[7] 张永刚. 地震波阻抗反演技术的现状和发展[J]. 石油物探, 2002, 41(4):385-390.
[7] Zhang Y G. The present and future of wave impedance inversion technique[J]. Geophysical Prospecting for Petroleum, 2002, 41(4):385-390.
[8] Liu W, Du W F, Guo Y L, et al. Lithology prediction method of coal-bearing reservoir based on stochastic seismic inversion and Bayesian classification:A case study on Ordos Basin[J]. Journal Geophysics Engineering, 2022, 19(3):494-510.
[9] 匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021, 48(1):1-11.
[9] Kuang L C, Liu H, Ren Y L, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1):1-11.
[10] 毋雪雁, 王水花, 张煜东. K最近邻算法理论与应用综述[J]. 计算机工程与应用, 2017, 53(21):1-7.
[10] Wu X Y, Wang S H, Zhang Y D. Survey on theory and application of K-Nearest-neighbors algorithm[J]. Computer Engineering and Applications, 2017, 53(21):1-7.
[11] Wang X D, Yang S C, Zhao Y F, et al. Lithology identification using an optimized KNN clustering method based on entropy-weighed cosine distance in Mesozoic strata of Gaoqing field,Jiyang depression[J]. Journal of Petroleum Science and Engineering, 2018, 166:157-174.
[12] 吕红燕, 冯倩. 随机森林算法研究综述[J]. 河北省科学院学报, 2019, 36(3):37-41.
[12] Lyu H Y, Feng Q. A review of random forests algorithm[J]. Journal of the Hebei Academy of Science, 2019, 36(3):37-41.
[13] Xi Y T, Mohamed Taha A M, Hu A Q, et al. Accuracy comparison of various remote sensing data in lithological classification based on random forest algorithm[J]. Geocarto International, 2022, 37(26):14451-14479.
[14] 丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1):2-10.
[14] Ding S F, Qi B J, Tan H Y. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1):2-10.
[15] 朱怡翔, 石广仁. 火山岩岩性的支持向量机识别[J]. 石油学报, 2013, 34 (2):312-322.
[15] Zhu Y X, Shi G R. identification of lithologic characteristics of volcanic rocks by support vector machine[J]. Acta PetroleiI Sinica, 2013, 34 (2):312-322.
[16] 李占山, 刘兆赓. 基于XGBoost的特征选择算法[J]. 通信学报, 2019, 40(10):101-108.
[16] Li Z S, Liu Z G. Feature selection algorithm based on XGBoost[J]. Journal on Communications, 2019, 40(10):101-108.
[17] 闫星宇, 顾汉明, 肖逸飞, 等. XGBoost算法在致密砂岩气储层测井解释中的应用[J]. 石油地球物理勘探, 2019, 54(2):447-455,241.
[17] Yan X Y, Gu H M, Xiao Y F, et al. XGBoost algorithm applied in the interpretation of tight-sand gas reservoir on well logging data[J]. Oil Geophysical Prospecting, 2019, 54(2):447-455,241.
[18] 苏高利, 邓芳萍. 论基于MATLAB语言的BP神经网络的改进算法[J]. 科技通报, 2003, 19(2):130-135.
[18] Su G L, Deng F P. On the improving backpropagation algorithms of the neural networks based on MATLAB language:A review[J]. Bulletin of Science and Technology, 2003, 19(2):130-135.
[19] Luo H, Lai F Q, Dong Z, et al. A lithology identification method for continental shale oil reservoir based on BP neural network[J]. Journal of Geophysics and Engineering, 2018, 15(3):895-908.
[20] 刘武生, 康世虎, 贾立城, 等. 二连盆地中部古河道砂岩型铀矿成矿特征[J]. 铀矿地质, 2013, 29(6):328-335.
[20] Liu W S, Kang S H, Jia L C, et al. Characteristics of paleo-valley sandstone-type uranium mineralization in the middle of erlian basin[J]. Uranium Geology, 2013, 29(6):328-335.
[21] 樊嵘, 孟大志, 徐大舜. 统计相关性分析方法研究进展[J]. 数学建模及其应用, 2014, 3(1):1-12.
[21] Fan R, Meng D Z, Xu D S. Survey of research process on statistical correlation analysis[J]. Mathematical Modeling and Its Applications, 2014, 3(1):1-12.
[22] Fernandez A, Garcia S, Herrera F, et al. SMOTE for learning from imbalanced data:Progress and challenges,marking the 15-year anniversary[J]. Journal of Artificial Intelligence Research, 2018, 61:863-905.
[23] Gers F A, Schmidhuber J, Cummins F. Learning to forget:Continual prediction with LSTM[J]. Neural Computation, 2000, 12(10):2451-2471.
[24] Yu Y, Si X S, Hu C H, et al. A review of recurrent neural networks:LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7):1235-1270.
[25] 刘建伟, 宋志妍. 循环神经网络研究综述[J]. 控制与决策, 2022, 37(11):2753-2768.
[25] Liu J W, Song Z Y. Overview of recurrent neural networks[J]. Control and Decision, 2022, 37(11):2753-2768.
[26] Milligan G W, Cooper M C. A study of standardization of variables in cluster analysis[J]. Journal of Classification, 1988, 5(2):181-204.
[1] 尚亚洲, 张兆辉, 许多年, 赵雯雯, 陈华勇, 韩海波. 基于随机森林的火山岩岩性测井识别——以准噶尔盆地滴西地区石炭系为例[J]. 物探与化探, 2024, 48(4): 1025-1036.
[2] 刘宇, 王亮, 罗洋, 苏树特, 姚蔺芳, 刘瑜超, 周纯润, 胡梦蝶. 川中地区茅口组碳酸盐岩储层类型测井识别[J]. 物探与化探, 2024, 48(3): 629-639.
[3] 夏常亮, 戴海涛, 李国强, 古发明, 吴德明, 韩利. 黄土塬地区双井微测井近地表Q模型的求取及应用[J]. 物探与化探, 2024, 48(3): 698-704.
[4] 苏可嘉, 秦臻, 冯敏, 艾寒冰, 王港, 关华玲, 付宇. PNN测井在剩余油评价中的应用——以老区油田高台子油层为例[J]. 物探与化探, 2024, 48(2): 393-402.
[5] 裴圣良, 屈建新, 张鹏. 来凤地区龙马溪组含气页岩测井识别——以WY1井为例[J]. 物探与化探, 2024, 48(2): 403-410.
[6] 郭雨姗, 王万银. 基于特征加权的KNN模型岩性识别方法[J]. 物探与化探, 2024, 48(2): 428-436.
[7] 江丽, 张智谟, 王琦玮, 封志兵, 张博程, 任腾飞. 基于不同机器学习模型的石油测井数据岩性分类对比研究[J]. 物探与化探, 2024, 48(2): 489-497.
[8] 杜惟一, 张冲, 韩华洋, 赵腾腾, 张文艺. 潜山花岗岩裂缝性储层阵列声波测井数值模拟研究[J]. 物探与化探, 2024, 48(2): 514-520.
[9] 周军, 边会媛, 陈文安, 张迪, 刘国良, 王飞. 牛东地区砂砾岩储层测井层内非均质性评价[J]. 物探与化探, 2024, 48(1): 142-150.
[10] 余永鹏, 张广兵, 黄自军, 闫建波, 王嘉文, 杨彦成, 毛兴军. 多源测井数据预测煤层工业组分和发热量模型研究[J]. 物探与化探, 2024, 48(1): 185-193.
[11] 陈元庆, 黄清波, 刘金尧, 王先贺, 黄亮, 吴伟军. 数字化γ能谱测井探管研制[J]. 物探与化探, 2024, 48(1): 210-215.
[12] 张雪昂, 杨志超, 李小燕, 董丽媛. 多孔隙度变化倾角裂缝型砂岩铀矿超热中子运移模拟[J]. 物探与化探, 2023, 47(6): 1547-1554.
[13] 王英梅, 焦雯泽, 刘生浩, 王茜, 宋瀚宇. 含天然气水合物沉积物的电阻率特性及阿尔奇公式的应用进展[J]. 物探与化探, 2023, 47(3): 782-793.
[14] 王振涛. 测井方位遮挡下的反距离加权建模方法[J]. 物探与化探, 2023, 47(3): 810-815.
[15] 王宗仁, 文畅, 谢凯, 盛冠群, 贺建飚. 多尺度时频空三域特征联合下的储层岩性识别方法[J]. 物探与化探, 2023, 47(1): 81-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com