Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (6): 1393-1401    DOI: 10.11720/wtyht.2025.1499
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
大深度激电法中电磁耦合效应分析与去除方法
冀振兴1(), 秦浩杰2,3, 陈儒军2,3,4,5(), 王权功1
1.江苏省地质局, 江苏 南京 210018
2.中南大学 地球科学与信息物理学院, 湖南 长沙 410083
3.中南大学 AIoT(人工智能物联网)与地质地球物理创新创业教育中心, 湖南 长沙 410083
4.有色资源与地质灾害探查湖南省重点实验室, 湖南 长沙 410083
5.中南大学 有色金属成矿预测与地质环境监测教育部重点实验室, 湖南 长沙 410083
Analysis and removal of electromagnetic coupling effects in the large-depth induced polarization method
JI Zhen-Xing1(), QIN Hao-Jie2,3, CHEN Ru-Jun2,3,4,5(), WANG Quan-Gong1
1. Jiangsu Geological Bureau, Nanjing 210018, China
2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
3. AIoT Innovation and Entrepreneurship Education Center for Geology and Geophysics, Central South University, Changsha 410083, China
4. Hunan Key Laboratory of Non-ferrous Resources and Geological Hazard Exploration, Changsha 410083, China
5. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China
全文: PDF(5982 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

随着浅层矿产资源的逐渐枯竭,深部矿产勘探成为矿业发展的必然趋势,增大勘探深度最直接、最有效的方法是增加激电装置的供电极距。然而,长供电极距会引发强烈的电磁耦合效应,从而对激电信号造成严重干扰。针对这一问题,本文基于解析方法计算了不同测量装置在均匀半空间和层状介质中的电磁耦合效应,通过对比,分析了测量装置类型、布线方式、供电极距、大地电阻率及频率等因素对电磁耦合强度的影响。最后,根据激电效应和电磁耦合效应在频率域内相位的差异,推导了相对相位谱的计算公式,并针对不同的应用场景对其去耦效果进行理论分析。研究结果表明,供电极距的增大、大地电阻率的降低以及工作频率的升高均会显著增强电磁耦合的干扰强度。在相同条件及探测深度下,四极装置受到的电磁耦合干扰通常高于三极装置。相较于传统的激电相位谱,相对相位谱的引入使三极装置和四极装置的最大工作频率分别提高了4倍和10.6倍,表明相对相位法在大深度激电法勘探中具有一定的去耦效果。本研究对大深度激电勘探的现场施工具有重要的指导意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冀振兴
秦浩杰
陈儒军
王权功
关键词 大深度激电法去耦相对相位法电极    
Abstract

With the gradual depletion of shallow mineral resources, deep mineral exploration has emerged as an essential development trend in the mining industry. Increasing the distance between receiver electrodes of induced polarization (IP) devices is the most direct and effective approach to enhance the exploration depth. However, a long distance can cause strong electromagnetic (EM) coupling effects, severely interfering with IP signals. Addressing this challenge, this study calculated the EM coupling effects of various measuring devices in homogeneous half-space and layered media using analytical methods. Furthermore, this study comparatively analyzed the impacts of various factors, including measuring device type, wiring layout, distance between receiver electrodes, earth resistivity, and frequency, on the EM coupling intensity. Based on the phase differences between IP and EM coupling effects in the frequency domain, this study derived the calculation equation of the relative phase spectrum, followed by a theoretical analysis of the decoupling effects in application scenarios. The results indicate that increasing distance between receiver electrodes, decreasing earth resistivity, and raising working frequency all significantly intensified the EM coupling interference. Under consistent conditions and detection depths, the Schlumberger array suffered from higher EM coupling interference compared to the pole-dipole array. Compared to the traditional IP phase spectrum, the relative phase spectrum enhanced the maximal working frequency of the pole-dipole and Schlumberger arrays by four and 10.6 times, respectively, suggesting the decoupling capability of the relative phase method in large-depth IP exploration. Overall, this study provides significant guidance for the field implementation of large-depth IP exploration.

Key wordslarge-depth induced polarization (IP) method    decoupling    relative phase method    electrode
收稿日期: 2024-12-26      修回日期: 2025-03-25      出版日期: 2025-12-20
ZTFLH:  P631  
基金资助:国家自然科学基金基础科学中心项目(72088101)
通讯作者: 陈儒军
引用本文:   
冀振兴, 秦浩杰, 陈儒军, 王权功. 大深度激电法中电磁耦合效应分析与去除方法[J]. 物探与化探, 2025, 49(6): 1393-1401.
JI Zhen-Xing, QIN Hao-Jie, CHEN Ru-Jun, WANG Quan-Gong. Analysis and removal of electromagnetic coupling effects in the large-depth induced polarization method. Geophysical and Geochemical Exploration, 2025, 49(6): 1393-1401.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1499      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I6/1393
Fig.1  常用电极装置结构
Fig.2  不同电极装置中激电相位和电磁耦合相位
Fig.3  三极装置中电磁耦合效应随供电极距的变化规律
Fig.4  中梯装置中旁侧距离对电磁耦合强度的影响
Fig.5  斯伦贝谢装置中电磁耦合响应频率特性
Fig.6  相对相位法中频比对去耦效果的影响
Fig.7  不同测量装置的激电相位谱和相对相位谱对比
Fig.8  激电相位谱和相对相位谱的最大工作频率对比
Fig.9  相对相位法去耦效果(以呼和沙拉某矿区为例)
[1] 滕吉文, 杨立强, 姚敬全, 等. 金属矿产资源的深部找矿、勘探与成矿的深层动力过程[J]. 地球物理学进展, 2007, 22(2):317-334.
[1] Teng J W, Yang L Q, Yao J Q, et al. Deep disscover ore, exploration and exploitation for metal mineral resocrces and its deep dynamical process of formation[J]. Progress in Geophysics, 2007, 22(2):317-334.
[2] 严加永, 滕吉文, 吕庆田. 深部金属矿产资源地球物理勘查与应用[J]. 地球物理学进展, 2008, 23(3):871-891.
[2] Yan J Y, Teng J W, Lyu Q T. Geophysical exploration and application of deep metallic ore resources[J]. Progress in Geophysics, 2008, 23(3):871-891.
[3] 李鹏, 罗玉钦, 田有, 等. 深部地质资源地球物理探测技术研究发展[J]. 地球物理学进展, 2021, 36(5):2011-2033.
[3] Li P, Luo Y Q, Tian Y, et al. Research progress of geophysical exploration technology for deep geological resources[J]. Progress in Geophysics, 2021, 36(5):2011-2033.
[4] Davydycheva S, Rykhlinski N, Legeido P. Electrical-prospecting method for hydrocarbon search using the induced-polarization effect[J]. Geophysics, 2006, 71(4):G179-G189.
[5] Veeken P C, Legeydo P J, Davidenko Y A, et al. Benefits of the induced polarization geoelectric method to hydrocarbon exploration[J]. Geophysics, 2009, 74(2):B47-B59.
[6] Schleifer N, Weller A, Schneider S, et al. Investigation of a Bronze Age plankway by spectral induced polarization[J]. Archaeological Prospection. 2002, 9:243-25.
[7] Gazoty A, Fiandaca G, Pedersen J, et al. Application of time domain induced polarization to the mapping of lithotypes in a landfill site[J]. Hydrology and Earth System Sciences, 2012, 16(6):1793-1804.
[8] Routh P S, Oldenburg D W. Electromagnetic coupling in frequency-domain induced polarization data:A method for removal[J]. Geophysical Journal International, 2001, 145(1):59-76.
[9] Wang J, Zhan K, Shien L, et al. Fundamental characteristics of an approximate correction method for electromagnetic coupling in frequency-domain induced polarization[J]. Geophysics, 1985, 50(2):235-241.
[10] 陈儒军, 罗维炳, 何继善, 等. 高精度多频电法数据采集系统[J]. 物探与化探, 2003, 27(5):375-378.
[10] Chen R J, Luo W B, He J S, et al. The data acquisition system in the high-precision multi frequency electric method[J]. Geophysical and Geochemical Exploration, 2003, 27(5):375-378.
[11] 肖都, 郭鹏, 林品荣, 等. 相位激电法在强干扰区的应用试验[J]. 物探化探计算技术, 2016, 38(5):593-597.
[11] Xiao D, Guo P, Lin P R, et al. Phase-IP experimental effects under the condition of strong interference and difficult grounding[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(5):593-597.
[12] 付国红, 潘志, 程辉, 等. 频率域激电发送端去耦建模与仿真分析[J]. 地球物理学进展, 2016, 31(4):1569-1574.
[12] Fu G H, Pan Z, Cheng H, et al. Decoupling model and simulation analysis from signal transmitters in frequency domain IP[J]. Progress in Geophysics, 2016, 31(4):1569-1574.
[13] 冉军林, 刘俊岩. 组合激电测深装置的应用与研究[J]. 物探与化探, 2018, 42(6):1259-1263.
[13] Ran J L, Liu J Y. The application and study of induced polarization group device[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1259-1263.
[14] 黄寄洲, 张国鸿. 频率域激电法的电磁耦合校正应用研究[J]. 安徽地质, 2014, 24(3):205-209.
[14] Huang J Z, Zhang G H. Applied research of electromagnetic coupling correction in frequency domain IP[J]. Geology of Anhui, 2014, 24(3):205-209.
[15] 徐勇, 陈林, 管文慧. 变频法电磁耦合效应校正原理与实例[J]. 西部资源, 2012,(4):190-191.
[15] Xu Y, Chen L, Guan W H. The correction principle and examples of electromagnetic coupling effect in frequency conversion method[J]. Western Resources, 2012,(4):190-191.
[16] 崔燕丽, 白宜诚, 罗维斌. 多频去耦在双频激电数据去耦中的应用[J]. 物探与化探, 2006, 30(1):71-74.
[16] Cui Y L, Bai Y C, Luo W B. The application of multiple frequency decoupling method to the removal of dual-frequency IP coupling effect[J]. Geophysical and Geochemical Exploration, 2006, 30(1):71-74.
[17] 郭鹏. 中梯装置相位激电电磁耦合研究[J]. 物探化探计算技术, 2015, 37(1):22-26.
[17] Guo P. A study on electromagnetic coupling of central gradient array phase-IP[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015, 37(1):22-26.
[18] 郭鹏, 林品荣, 石福升. 相位激电电磁耦合两频校正技术[J]. 物探与化探, 2010, 34(4):489-492.
[18] Guo P, Lin P R, Shi F S. The phase-IP electromagnetic coupling correction technique of two frequencies[J]. Geophysical and Geochemical Exploration, 2010, 34(4):489-492.
[19] 陈儒军, 何继善, 白宜诚, 等. 多频激电相对相位谱研究[J]. 中南大学学报:自然科学版, 2004, 35(1):106-111.
[19] Chen R J, He J S, Bai Y C, et al. The study of relative phase spectrum in multi-frequency induced polarization[J]. Journal of Central South University of Technology:Natural Science Edition, 2004, 35(1):106-111.
[20] 李栋, 杨帆, 高鹏举. 相位激电法电磁耦合效应的校正[J]. 矿产勘查, 2019, 10(2):316-320.
[20] Li D, Yang F, Gao P J. The Phase-IP electromagnetic coupling correction[J]. Mineral Exploration, 2019, 10(2):316-320.
[21] 向毕文, 陈儒军, 淳少恒, 等. 利用指数函数拟合去除扩频激电信号中的电磁耦合感应[J]. 物探与化探, 2015, 39(5):1053-1058.
[21] Xiang B W, Chen R J, Chun S H, et al. A new method for removing EM-coupling in spread spectrum induced polarization based on exponential function fitting[J]. Geophysical and Geochemical Exploration, 2015, 39(5):1053-1058.
[22] Thomas I N, Francois B. CRID mod:A matlab program to model ID complex resisivity effects in electrical and electromagnetic surveys[J]. Computer & Geosciences, 2006, 32(9):1411-1419.
[23] Madden T R, Cantwell T. Induced polarization,a review[C]// Society of Exploration Geophysicists, 1967.
[24] Sunde E D. Earth conduction effects in transmission system[M]. New York: Dover, 1968.
[25] Dey A, Morrison H F. Electromagnetic coupling in frequency and time-domain induced-polarization surveys over a multilayered earth[J]. Geophysics, 1973, 38:380-405.
[26] 于立波. 一维频谱激电法正反演研究[D]. 长春: 吉林大学, 2010.
[26] Yu L B. The study of simulation and inversion of 1D spectrum induced polarization method[D]. Changchun: Jilin University, 2010.
[27] 刘飞. 含电磁耦合效应的频谱激电一维正反演[D]. 抚州: 东华理工大学, 2014.
[27] Liu F. One-dimensional forward and backward modeling of spectrum induced polarization with electromagnetic coupling effect[D]. Fuzhou: East China Institute of Technology, 2014.
[28] Ghorbani A, Camerlynck C, Florsch N. CR1Dinv:A Matlab program to invert 1D spectral induced polarization data for the Cole-Cole model including electromagnetic effects[J]. Computers & Geosciences, 2009, 35(2):255-266.
[29] 牛超, 施龙青, 肖乐乐, 等. 非无穷远极距对三极直流电法影响[J]. 地球物理学进展, 2013, 28(6):3324-3331.
[29] Niu C, Shi L Q, Xiao L L, et al. Influence of pole-dipole array electric sounding under non-infinite space[J]. Progress in Geophysics, 2013, 28(6):3324-3331.
[1] 林家勇, 徐志敏, 周聪. 音频大地电磁测深法数据质量监控——基于EH4测量电极对数据质量影响因素分析[J]. 物探与化探, 2025, 49(5): 1126-1132.
[2] 葛为中, 梁炳和, 高建东, 吕玉增, 陈龙. 基于借线遥控电极阵列的二维/三维电法勘探[J]. 物探与化探, 2024, 48(6): 1437-1447.
[3] 庞永昊, 沈昭昂, 常志喜, 李广场, 陈美, 谢志伟, 王威. 基于非对称设计的高密度电法观测装置研究[J]. 物探与化探, 2024, 48(3): 786-793.
[4] 刘彬, 徐进力, 杜雪苗, 唐瑞玲, 张鹏鹏, 白金峰, 于林松, 万方. 超声提取—离子选择电极法测定化肥样品中的氟[J]. 物探与化探, 2023, 47(3): 775-781.
[5] 王辉, 付书计, 葛帅寅, 马方圆, 宋宝家, 罗景程. 免维护超低噪声固体不极化电极的研制与性能测试[J]. 物探与化探, 2022, 46(3): 714-721.
[6] 李忠平, 郝风云, 吴鸿飞, 张瑞芳, 朱昭明, 贾全山, 刘双. 时间域激电测深不同装置数据去耦分析[J]. 物探与化探, 2022, 46(3): 722-728.
[7] 肖月桐, 王猛, 王兴卓, 陈凯, 时宗洋, 赵一宇, 付悦思. 镍酸钐研究进展及其用于海洋电场传感器的可行性分析[J]. 物探与化探, 2022, 46(2): 418-423.
[8] 刘长胜, 马金发, 朱文杰, 周海根. 深井电场测量不极化电极特性研究[J]. 物探与化探, 2020, 44(4): 816-819.
[9] 李忠平, 王晓华. 基于二维电测深数据作三维反演的基岩探测[J]. 物探与化探, 2020, 44(3): 643-648.
[10] 张来福, 李士强, 刘国强, 杨虹, 田赟, 李国栋. 输电杆塔下采空区电法探测电极系统设计[J]. 物探与化探, 2020, 44(1): 220-225.
[11] 刘成功, 金胜, 魏文博, 景建恩, 叶高峰, 尹曜田. 高密度电阻率法比值参数基于阻尼最小二乘反演[J]. 物探与化探, 2019, 43(2): 351-358.
[12] 冉军林, 刘俊岩. 组合激电测深装置的应用与研究[J]. 物探与化探, 2018, 42(6): 1259-1263.
[13] 晏月平, 徐军伟, 黄朝宇. 等深模式电极序列法电测深研究[J]. 物探与化探, 2016, 40(6): 1173-1177.
[14] 杨兴沐, 黄卓雄, 葛为中, 梁炳和, 高建东. 遥控电极阵列拓展高密度电阻率法勘探深度研究[J]. 物探与化探, 2016, 40(1): 73-77.
[15] 叶俊麟, 罗有春. 新疆戈壁地区大功率激电勘探接地电阻改善方法[J]. 物探与化探, 2015, 39(6): 1156-1159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com