Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (1): 81-90    DOI: 10.11720/wtyht.2023.1020
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
多尺度时频空三域特征联合下的储层岩性识别方法
王宗仁1,2,3(), 文畅4,5(), 谢凯1,2,3, 盛冠群6, 贺建飚7
1.长江大学 电子信息学院,湖北 荆州 434023
2.油气资源与勘探技术教育部重点实验室,湖北 荆州 434023
3.长江大学 电工电子国家级实验教学示范中心,湖北 荆州 434023
4.长江大学 西部研究院,新疆 克拉玛依市 834000
5.长江大学 计算机科学学院,湖北 荆州 434023
6.三峡大学 计算机与信息学院,湖北 宜昌 443002
7.中南大学 计算机学院,湖南 长沙 410083
Reservoir lithology identification method based on multi-scale time-frequency-space feature combination
WANG Zong-Ren1,2,3(), WEN Chang4,5(), XIE Kai1,2,3, SHENG Guan-Qun6, HE Jian-Biao7
1. School of Electronic Information,Yangtze University,Jingzhou 434023,China
2. Key Laboratory of Oil and Gas Resources and Exploration Technology, Ministry of Education,Jingzhou 434023,China
3. National Experimental Teaching and Demonstration Center of Electrical Engineering and Electronics,Yangtze University,Jingzhou 434023,China
4. Western Research Institute of Yangtze University,Xinjiang 834000,China
5. School of Computer Science,Yangtze University,Jingzhou 434023,China
6. School of Computer and Information,China Three Gorges University,Yichang 443002,China
7. School of Computer Science,Central South University,Changsha 410083,China
全文: PDF(6331 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对储层岩性种类繁多、交替频繁、组成复杂,传统方法识别精度低、效率慢的问题,本文提出一种多尺度时频空三域特征联合下的储层岩性识别方法。该方法在原始测井特征的基础上引入了互补集合经验模态分解(CEEMD)的多尺度频域分量,从而提高测井曲线的纵向分辨率。此外,构建了注意力机制优化的多尺度卷积双向门控循环神经网络(CNN-BiGRU-AT)模型,对加入了多尺度频域分量的测井数据进行时空特征提取,从而实现了对测井数据时、频、空三域特征的联合学习,最后以注意力机制优化了模型输出,减少了错误信息的传播。为了验证方法可靠性,本文选取了资料较为完整的5口井数据进行实验分析。结果表明,在不同数据组合的对比实验中,加入多尺度频域分量在训练集和验证集识别准确率分别提高了9.50%和8.66%。在与不同模型对比实验中,本文方法在样本识别准确率达到了94.11%,与支持向量机(SVM)、BP神经网络、卷积神经网络(CNN)、双向门控循环神经网络(BiGRU)和CNN-BiGRU融合模型相比,本文方法识别准确率分别提高了16.21%、14.54%、11.69%、5.05%、3.38%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宗仁
文畅
谢凯
盛冠群
贺建飚
关键词 互补集合经验模态分解注意力机制多尺度神经网络岩性识别    
Abstract

Conventional methods for reservoir lithology identification suffer low precision and efficiency since reservoir lithologies have various types and complex compositions and alternate frequently.This study proposed a reservoir lithology identification method based on multi-scale time-frequency-space feature combination.Based on the original logging characteristics,this method introduced the multi-scale frequency-domain components from the complementary ensemble empirical mode decomposition (CEEMD) to improve the longitudinal resolution of log curves.Moreover,a multi-scale convolutional neural network-bidirectional gated recurrent unit-attention mechanism (CNN-BiGRU-AT) model was constructed to extract the spatio-temporal features of log data containing multi-scale frequency-domain components.In this way,the joint learning of time-frequency-space features of log data was realized.Finally,the model output was optimized using the attention mechanism to reduce the propagation of error information.To verify the reliability of this method,an experimental analysis was conducted using the data from five wells that have relatively complete data.As revealed by the analysis results,the identification accuracy of training and verification sets containing multi-scale frequency-domain components was increased by 9.50% and 8.66%,respectively in the comparative experiments of different data combinations.The method proposed in this study yielded sample identification accuracy of 94.11%.Compared with support vector machine (SVM),backpropagation (BP) neural network,convolutional neural network (CNN),bidirectional gated recurrent unit (BiGRU),and CNN-BiGRU fusion models, the identification accuracy of this method increased by 16.21%,14.54%,11.69%,5.05%,and 3.38%,respectively.

Key wordsCEEMD    attention mechanism    multi-scale    neural network    lithology identification
收稿日期: 2022-01-25      修回日期: 2022-12-12      出版日期: 2023-02-20
ZTFLH:  P  
基金资助:新疆维吾尔自治区自然科学基金项目(2020D01A131);湖北省自然科学基金项目(2021CFB119)
通讯作者: 文畅(1979-),女,硕士,主要从事于地震信号处理、储层预测与人工智能方面的研究工作。Email:wenchang2016paper@163.com
作者简介: 王宗仁(1999-),男,长江大学硕士研究生,主要从事于深度学习和储层预测方面的研究工作。Email:wangzongren1999@163.com
引用本文:   
王宗仁, 文畅, 谢凯, 盛冠群, 贺建飚. 多尺度时频空三域特征联合下的储层岩性识别方法[J]. 物探与化探, 2023, 47(1): 81-90.
WANG Zong-Ren, WEN Chang, XIE Kai, SHENG Guan-Qun, HE Jian-Biao. Reservoir lithology identification method based on multi-scale time-frequency-space feature combination. Geophysical and Geochemical Exploration, 2023, 47(1): 81-90.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1020      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I1/81
步骤 描述
Step 1: 将高斯白噪声 n i t加入待分解 s t中得到新信号 x t, i为加入白噪声的次数, i = 1,2 , , N: x t = s t ± ε n i t
Step 2: 对加入噪声的新信号进行EMD分解,并得出一阶本征模态分量 C 1 t: E x t = C 1 i t + r i
Step 3: 对N个模态分量进行总体平均得到CEEMD分解的第一个本征模态分量: C 1 t ˉ = 1 N i = 1 N C 1 i t
Step 4: 去除第一个模态分量后的残差: r 1 t = s t - C 1 t ˉ
Step 5: r 1 t中加入正负的高斯白噪声,再次进行EMD分解,得到一阶模态分量 D 1,由此可得到第2个本征模态分量 C 2: C 2 t ˉ = 1 N i = 1 N D 1 i t
Step 6: 去除第二个本征模态分量后的残差: r 2 t = r 1 t - C 2 t ˉ
Step 7: 重复以上步骤,直到 r n t不能再次分解,算法结束。此时本征模态分量数量为K,原始信号 s t被分解为: s t = k = 1 K C k t ˉ + r k t
Table 1  互补集合经验模态分解算法流程
Fig.1  多尺度CNN-BiGRU-AT岩性识别算法流程
Fig.2  CNN多尺度空间特征提取
Fig.3  BiGRU网络结构
Fig.4  GRU细胞结构
Fig.5  注意力机制优化
深度 AC GR MINV MNOR R4 SP Label
3200 192.5 3.735 5.183 4.34 20.923 17.097 3
3200.125 190.439 3.939 5.217 5.908 22.488 17.065 3
3200.25 189.385 4.278 4.716 6.812 24.14 16.997 3
... ... ... ... ... ... ... ...
3799.75 327.084 8.221 0.856 0.807 1.84 19.522 0
3799.875 332.941 8.47 0.895 0.877 1.841 19.522 0
3800 331.738 8.53 0.953 0.935 1.841 19.623 0
Table 2  部分测井岩性数据
Fig.6  苏27井测井岩性箱型
参数类型 参数值
卷积层Ⅰ卷积核尺寸 3×6、5×6、7×6、9×6
卷积层Ⅱ卷积核尺寸 3×1、5×1、7×1、9×1
卷积层Ⅰ卷积核个数 32
卷积层Ⅱ卷积核个数 64
每层BiGRU的GRU单元个数 128×2
丢弃概率 0.3
学习率 0.0001
迭代次数 300
批次大小 64
优化器 Adam
Table 3  实验超参数配置
Fig.7  准确率与迭代次数关系
Fig.8  损失值与迭代次数关系
Fig.9  GR曲线不同方法分解
组别 数据类型
原测井数据 多尺度频
率分量
训练识别
准确率/%
验证识别
准确率/%
1 75.69 75.02
2 71.86 71.27
3 85.19 83.68
Table 4  不同组合数据的实验结果
Fig.10  组别1和组别3岩性识别柱状图
岩性 精准率/%
SVM BP CNN BiGRU CNN-
BiGRU
本文
方法
泥岩 80.76 81.78 84.01 88.53 89.55 93.05
砂岩 55.68 60.34 64.26 82.81 84.79 90.41
砾岩 39.13 16.13 68.00 70.73 81.55 95.10
火山岩 92.34 93.08 93.72 96.61 99.18 99.64
火山碎屑岩 0.00 0.00 0.00 55.56 82.61 88.00
准确率/% 77.90 79.57 82.42 89.06 90.73 94.11
Table 5  苏27井不同模型岩性识别的结果
Fig.11  苏27井不同模型岩性识别结果柱状图
真实岩性 预测岩性(本文方法/CNN-BiGRU) 精准率/% 召回率/% F1得分/%
泥岩 砂岩 砾岩 火山岩 火山碎屑岩
泥岩 2503/2468 80/107 3/9 2/4 0/0 93.05/89.55 96.72/95.36 94.85/92.37
砂岩 174/260 792/697 2/10 1/2 0/0 90.04/84.79 81.73/71.93 85.85/77.83
砾岩 7/18 0/2 97/84 0/0 0/0 95.10/81.55 93.27/80.77 94.17/81.16
火山岩 3/6 2/14 0/0 1104/1088 3/4 99.64/99.18 99.28/97.84 99.46/98.51
火山碎屑岩 3/4 2/2 0/0 1/3 22/19 88.00/82.61 78.57/67.86 83.02/74.51
Table 6  苏27井本文方法和CNN-BiGRU模型的混淆矩阵
[1] 付光明, 严加永, 张昆, 等. 岩性识别技术现状与进展[J]. 地球物理学进展, 2017, 32(1):26-40.
[1] Fu G M, Yan J Y, Zhang K, et al. Current status and progress of lithology identification technology[J]. Progress in Geophysics, 2017, 32(1):26-40.
[2] Adeniran A A, Adebayo A R, Salami H O, et al. A competitive ensemble model for permeability prediction in heterogeneous oil and gas reservoirs[J]. Applied Computing and Geosciences, 2019, 1:100004.
doi: 10.1016/j.acags.2019.100004
[3] 袁照威, 段正军, 张春雨, 等. 基于马尔科夫概率模型的碳酸盐岩储集层测井岩性解释[J]. 新疆石油地质, 2017, 38(1):96-102.
[3] Yuan Z W, Duan Z J, Zhang G Y, et al. Interpretation of logging lithology in Carbonate reservoirs based on Markov Chain probability model[J]. Xinjiang Petroleum Geology, 2017, 38(1):96-102.
[4] 成大伟, 袁选俊, 周川闽, 等. 测井岩性识别方法及应用——以鄂尔多斯盆地中西部长7油层组为例[J]. 中国石油勘探, 2016, 21(5):117-126.
[4] Cheng D W, Yuan X J, Zhou C M, et al. Logging-lithology identifi cation methods and their application:A case study on Chang 7 Member in central-western Ordos Basin,NW China[J]. China Petroleum Exploration, 2016, 21(5):117-126.
[5] 王泽华, 朱筱敏, 孙中春, 等. 测井资料用于盆地中火成岩岩性识别及岩相划分:以准噶尔盆地为例[J]. 地学前缘, 2015, 22(3):254-268.
doi: 10.13745/j.esf.2015.03.022
[5] Wang Z H, Zhu X M, Sun Z C, et al. Igneous lithology identification and lithofacies classification in the basin using logging data:Taking Junggar Basin as an example[J]. Earth Science Frontiers, 2015, 22(3):254-268.
[6] Bai X L, Zhang S N, Huang Q Y, et al. Origin of dolomite in the Middle Ordovician peritidal platform carbonates in the northern Ordos Basin,western China[J]. Petroleum Science, 2016, 13(3):434-449.
doi: 10.1007/s12182-016-0114-5
[7] Bressan T S, Souza M, Girelli T J, et al. Evaluation of machine learning methods for lithology classification using geophysical data[J]. Computers & Geosciences, 2020, 139:104475.
doi: 10.1016/j.cageo.2020.104475
[8] Corina A N, Hovda S. Automatic lithology prediction from well logging using kernel density estimation[J]. Journal of Petroleum Science and Engineering, 2018, 170:664-674.
doi: 10.1016/j.petrol.2018.06.012
[9] 安鹏, 曹丹平. 基于深度学习的测井岩性识别方法研究与应用[J]. 地球物理学进展, 2018, 33(3):1029-1034.
[9] An P, Cao D P. Research and application of logging lithology identification based on deep learning[J]. Progress in Geophysics, 2018, 33(3):1029-1034.
[10] 蔡泽园, 鲁宝亮, 熊盛青, 等. 基于自适应核密度的贝叶斯概率模型岩性识别方法研究[J]. 物探与化探, 2020, 44(4):919-927.
[10] Cai Z Y, Lu B L, Xiong S Q, et al. Lithology identification based on Bayesian probability using adaptive kernel density[J]. Geophysical and Geochemical Exploration, 2020, 44(4):919-927.
[11] 谷宇峰, 张道勇, 鲍志东, 等. GBDT识别致密砂岩储层岩性[J]. 地球物理学进展, 2021, 36(5):1956-1965.
[11] Gu Y F, Zhang D Y, Bao Z D, et al. Lithology prediction of tight sandstone reservoirs using GBDT[J]. Progress in Geophysics, 2021, 169(5):1956-1965.
[12] 苏赋, 马磊, 罗仁泽, 等. 基于改进多分类孪生支持向量机的测井岩性识别方法研究与应用[J]. 地球物理学进展, 2020, 35(1):174-180.
[12] Su F, Ma L, Luo R Z, et al. Research and application of logging lithology identification based on improve multi-class twin support vector machine[J]. Progress in Geophysics, 2020, 35(1):174-180.
[13] 杨柳青, 陈伟, 查蓓. 利用卷积神经网络对储层孔隙度的预测研究与应用[J]. 地球物理学进展, 2019, 34(4):1548-1555.
[13] Yang L Q, Chen W, Cha P. Prediction and application of reservoir porosity by convolutional neural network[J]. Progress in Geophysics, 2019, 34(4):1548-1555.
[14] 武中原, 张欣, 张春雷, 等. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3):120-128.
[14] Wu Z Y, Zang X, Zhang C L, et al. Lithology identification based on LSTM recurrent neural network[J]. Lithologic Reservoirs, 2021, 33(3):120-128.
[15] 周恒, 张春雷, 张欣, 等. 基于胶囊网络的碳酸盐岩储层岩性识别方法[J]. 天然气地球科学, 2021, 32(5):685-694.
[15] Zhou H, Zhang C L, Zhang X, et al. Lithology identification method of carbonate reservoir based on capsule network[J]. Natural Gas Geoscience, 2021, 32(5):685-694.
[16] 王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2):394-400.
[16] Wang Y C, Liu L T, Xu H Z. The identification of gravity anomaly body based on the convolutional neural network[J]. Geophysical and Geochemical Exploration, 2020, 44(2):394-400.
[17] 梁立锋, 刘秀娟, 张宏兵, 等. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1):133-139.
[17] Liang L F, Liu X J, Zhang H B, et al. A study of the effect of hyperparameters GRU-CNN hybrid deep learning EI inversion[J]. Geophysical and Geochemical Exploration, 2021, 45(1):133-139.
[1] 游希然, 张继锋, 石宇. 基于人工神经网络的瞬变电磁成像方法[J]. 物探与化探, 2023, 47(5): 1206-1214.
[2] 周慧, 孙成禹, 刘英昌, 蔡瑞乾. 基于DC-UNet卷积神经网络的强噪声压制方法[J]. 物探与化探, 2023, 47(5): 1288-1297.
[3] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[4] 杨朝义, 朱乾坤, 揭绍鹏, 孔垂爱, 沙有财, 钟志勇, 沈啟武, 陈志军, 马火林. 云南普朗铜矿井孔测井资料综合应用[J]. 物探与化探, 2023, 47(1): 14-21.
[5] 陈超群, 戴慧敏, 冯雨林, 杨泽, 杨佳佳. 基于Sentinel-2A的孙吴地区土壤有机质反演研究[J]. 物探与化探, 2022, 46(5): 1141-1148.
[6] 孟庆奎, 张文志, 高维, 舒晴, 李瑞, 徐光晶, 张凯淞. 重力位场小波多尺度分解性质的分析与应用[J]. 物探与化探, 2022, 46(4): 946-954.
[7] 国运东. 基于组合震源编码的多尺度全波形反演方法[J]. 物探与化探, 2022, 46(3): 729-736.
[8] 王蓉, 熊杰, 刘倩, 薛瑞洁. 基于深度神经网络的重力异常反演[J]. 物探与化探, 2022, 46(2): 451-458.
[9] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[10] 张鹏飞, 张世晖. 西湖凹陷平湖组砂泥岩岩性神经网络地震预测[J]. 物探与化探, 2021, 45(4): 1014-1020.
[11] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[12] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
[13] 梁立锋, 刘秀娟, 张宏兵, 陈程浩, 陈锦华. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1): 133-139.
[14] 张杨, 王君恒, 曹炼鹏, 冯裕华, 朱江皇, 付强. 曲波变换在位场信号提取中的应用研究[J]. 物探与化探, 2021, 45(1): 84-94.
[15] 臧子婧, 吴海波, 丁海, 张平松, 董守华. 基于优选地震属性与PSO-BP模型的煤层含气量预测[J]. 物探与化探, 2020, 44(6): 1381-1386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com