Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 782-793    DOI: 10.11720/wtyht.2023.1147
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
含天然气水合物沉积物的电阻率特性及阿尔奇公式的应用进展
王英梅1,2(), 焦雯泽1,2, 刘生浩1,2, 王茜1,2, 宋瀚宇1,2
1.兰州理工大学 能源与动力工程学院,甘肃 兰州 730050
2.兰州理工大学 甘肃省生物质能与太阳能互补供能系统重点实验室,甘肃 兰州 730050
Resistivity characteristics of natural gas hydrate-bearing sediments and the application progress of the Archie equation
WANG Ying-Mei1,2(), JIAO Wen-Ze1,2, LIU Sheng-Hao1,2, WANG Qian1,2, SONG Han-Yu1,2
1. Lanzhou University of Technology, Lanzhou 730050, China
2. Key Laboratory of Complementary Energy System of Biomass and Solar Energy, Lanzhou 730050, China
全文: PDF(2996 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

天然气水合物饱和度的评价以阿尔奇(Archie)公式为核心、岩电参数为应用基础。针对不同的地质环境匹配相应的岩电参数值,尤其是孔隙度指数(m)和饱和度指数(n),是准确计算饱和度的关键。在电阻率测井中,如何使mn值更适合于天然气水合物的评价仍是一个难题。为了厘清天然气水合物电阻率的相关规律和Archie公式中岩电参数值的确定方法,本文系统调研了相关文献资料,对天然气水合物的电阻率影响因素进行了总结梳理,并对如何利用Archie公式精准评价天然气水合物的饱和度进行了影响因素的分析。在此基础上,总结了天然气水合物沉积物的电阻率特性,提出了Archie公式的应用研究方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王英梅
焦雯泽
刘生浩
王茜
宋瀚宇
关键词 天然气水合物电阻率测井阿尔奇公式岩电参数饱和度    
Abstract

Studying the occurrence of natural gas hydrates (NGHs) is of profound significance for NGH exploration. The evaluation of the NGH saturation mainly relies on the Archie equation using the electrical parameters of rocks. The key to accurately calculating the NGH saturation is to select corresponding values of rock electrical parameters for different geological environments, especially the porosity index (m) and the saturation index (n). However, it is still a challenge to select the optimal m and n values for NGH evaluation in resistivity logging. To ascertain the relevant resistivity regularity of NGHs and the determination method of rock electrical parameter values in the Archie equation, this study systematically reviewed relevant references and summarized the resistivity influencing factors of NGHs. Moreover, this study analyzed the influencing factors for the accurate evaluation of the NGH saturation based on the Archie equation. Accordingly, this study generalized the resistivity characteristics of NGH-bearing sediments and proposed the application research direction of the Archie equation.

Key wordsnatural gas hydrate    resistivity logging    Archie equation    rock electrical parameter    saturation
收稿日期: 2022-04-06      修回日期: 2022-03-28      出版日期: 2023-06-20
ZTFLH:  TE155  
  P631  
基金资助:国家自然科学基金项目(41661103);国家重点研发计划项目(2017YFC0307303);中国科学院冻土工程国家重点实验室开放基金项目(SKLFSE201406)
作者简介: 王英梅(1987-),女,副教授,硕士研究生导师,研究方向为天然气水合物。Email:wymch@lab.ac
引用本文:   
王英梅, 焦雯泽, 刘生浩, 王茜, 宋瀚宇. 含天然气水合物沉积物的电阻率特性及阿尔奇公式的应用进展[J]. 物探与化探, 2023, 47(3): 782-793.
WANG Ying-Mei, JIAO Wen-Ze, LIU Sheng-Hao, WANG Qian, SONG Han-Yu. Resistivity characteristics of natural gas hydrate-bearing sediments and the application progress of the Archie equation. Geophysical and Geochemical Exploration, 2023, 47(3): 782-793.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1147      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/782
Fig.1  全球主要天然气水合物钻探与试采区域[29]
Fig.2  全球主要海域天然气水合物钻探项目时间线[30]
Fig.3  水合物模拟反应实验装置示意[47-48,50]
Fig.4  水合物的形成过程及孔隙中的赋存状态[7]
[1] 付亚荣, 李明磊, 王树义, 等. 中国陆域冻土层可燃冰勘探开发现状与前景[J]. 工程研究—跨学科视野中的工程, 2018, 10(5):440-450.
[1] Fu Y R, Li M L, Wang S Y, et al. Current situation and prospect of exploration and development of combustible ice in continental frozen soil in China[J]. Engineering Research—Engineering in Interdisciplinary Perspective, 2018, 10(5):440-450.
[2] Wei J, Fang Y, Lu H, et al. Distribution and characteristics of natural gas hydrates in the Shenhu sea area,South China Sea[J]. Marine and Petroleum Geology, 2018, 98:622-628.
doi: 10.1016/j.marpetgeo.2018.07.028
[3] Song Y, Lei Y, Zhao J, et al. The status of natural gas hydrate research in China: A review[J]. Renewable & Sustainable Energy Reviews, 2014, 31(2):778-791.
[4] 李雄炎, 秦瑞宝, 刘春成. 岩电参数对储层饱和度计算精度的影响分析[J]. 西南石油大学学报:自然科学版, 2014, 36(3):68-74.
[4] Li X Y, Qin R B, Liu C C. Analyzing the effect of rock electrical parameters on the calculation of the reservoir saturation[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2014, 36(3):68-74.
[5] 范宜仁, 朱学娟. 天然气水合物储层测井响应与评价方法综述[J]. 测井技术, 2011, 35(2):104-111.
[5] Fan Y R, Zhu X J. Review on logging responses and evaluation methods of natural gas hydrated reservoir[J]. Well Logging Technology, 2011, 35(2):104-111.
[6] 郭洋, 胡高伟, 李彦龙, 等. 含水合物沉积物电阻率演化规律实验研究进展[J]. 海洋地质前沿, 2021, 37(5): 1-13.
[6] Guo Y, Hu G W, Li Y L, et al. Progress in experimental research on resistivity evolution of hydrate bearing sediments[J]. Marine Geology Frontiers, 2021, 37(5):1-13.
[7] 宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8):1-24.
[7] Ning F L, Liang J Q, Wu N Y, et al. Reservoir characteristics of natural gas hydrates in China[J]. Natural Gas Industry, 2020, 40(8):1-24.
[8] Pearson C, Murphy J, Hermes R. Acoustic and resistivity measurements on rock samples containing tetrahydrofuran hydrates: Laboratory analogues to natural gas hydrate deposits[J]. Journal of Geophysical Research Solid Earth, 1986, 91(14):14132-14138.
[9] Lee J Y, Santamarina J C, Ruppel C. Parametric study of the physical properties of hydrate-bearing sand,silt,and clay sediments: Electromagnetic properties[J]. Journal of Geophysical Research Solid Earth, 2010, 115(11): 104-112.
[10] Zatsepina O Y, Buffett B A. Experimental study of the stability of CO2-hydrate in a porous medium[J]. Fluid Phase Equilibria, 2001, 192(1/2):85-102.
doi: 10.1016/S0378-3812(01)00636-7
[11] Heeschen K U, Schicks J M, Oeltzschner G. The promoting effect of natural sand on methane hydrate formation: Grain sizes and mineral composition[J]. Fuel, 2016, 181(10):139-147.
doi: 10.1016/j.fuel.2016.04.017
[12] 孙鲁一, 张广旭, 王秀娟, 等. 南海神狐海域天然气水合物饱和度的数值模拟分析[J]. 海洋地质与第四纪地质, 2021, 41(2):210-221.
[12] Sun L Y, Zhang G X, Wang X J, et al. Numerical modeling of gas hydrate saturation for the Shenhu area,South China Sea[J]. Marine Geology Frontiers, 2021, 41(2):210-221.
[13] Chen L T, Li N, Sun C Y, et al. Hydrate formation in sediments from free gas using a one-dimensional visual simulator[J]. Fuel, 2017, 197:298-309.
doi: 10.1016/j.fuel.2017.02.034
[14] Kim H S, Cho G C, Lee J Y, et al. Geotechnical and geophysical properties of deep marine fine-grained sediments recovered during the second Ulleung Basin Gas Hydrate expedition,East Sea,Korea[J]. Marine and Petroleum Geology, 2013, 47(1):56-65.
doi: 10.1016/j.marpetgeo.2013.05.009
[15] 陈玉凤, 梁德青, 吴能友. 南海神狐海域水合物对岩心电阻率的影响[J]. 石油地球物理勘探, 2018, 53(6): 1241-1246.
[15] Chen Y F, Liang D Q, Wu N Y. Effect of hydrate on core resistivity in Shenhu area,South China Sea[J]. Oil Geophysical Prospecting, 2018, 53(6):1241-1246.
[16] Dufrane W L, Stern L A, Constable S, et al. Electrical properties of methane hydrate+sediment mixtures[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(7):4773-4783.
doi: 10.1002/jgrb.v120.7
[17] Waite W F, Santamarina J C, Cortes D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4):RG4003.
[18] 周锡堂, 樊栓狮, 梁德青. 用电导性监测天然气水合物的形成和分解[J]. 天然气地球科学, 2007, 18(4):593-595.
[18] Zhou X T, Fan S S, Liang D Q. Detecting formation and decomposition of NGH by measuring conductivity[J]. Natural Gas Geoscience, 2007, 18(4):593-595.
[19] 王英梅, 吴青柏, 蒲毅彬, 等. 温度梯度对粗砂中甲烷水合物形成和分解过程的影响及电阻率响应[J]. 天然气地球科学, 2012, 23(1):19-25.
[19] Wang Y M, Wu Q B, Pu Y B, et al. Effect of temperature gradient on methane hydrate formation and decomposition process and resistivity response in coarse sand[J]. Natural Gas Geoscience, 2012, 23(1):19-25.
[20] 陈玉凤, 徐宗财, 李栋梁, 等. 温度周期变化下分散型天然气水合物的沉积物电阻率测量[J]. 海洋地质前沿, 2013, 29(7):18-24.
[20] Chen Y F, Xu Z C, Li D L, et al. Electricity resistivity measurement of disseminated gas hydrates bearing under cyclic temperature[J]. Marine Geology Frontiers, 2013, 29(7):18-24.
[21] Gabitto J F, Costas T. Physical properties of gas hydrates: A review[J]. Journal of Thermodynamics, 2010(7):1-13.
[22] Lu R, Stern L A, Du F, et al. The effect of brine on the electrical properties of methane hydrate[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11):10877-10892.
doi: 10.1029/2019JB018364
[23] 李淑霞, 夏唏冉, 郝永卯, 等. 电阻率测试技术在沉积物—盐水—甲烷水合物体系中的应用[J]. 实验力学, 2010, 25(1):95-99.
[23] Li S X, Xia X R, Hao Y M, et al. Application of resistivity measurement in the system of sediment-brine-methane hydrate[J]. Journal of experimental mechanics, 2010, 25(1):95-99.
doi: 10.1007/BF02329132
[24] 任韶然, 刘建新, 刘义兴, 等. 多孔介质中甲烷水合物形成与分解实验研究[J]. 石油学报, 2009, 30(4):583-587.
doi: 10.7623/syxb200904019
[24] Ren S R, Liu J X, Liu Y X, et al. Experimental study on formation and decomposition of methane hydrate in porous media[J]. Acta Petrolei Sinica, 2009, 30(4):583-587.
[25] Sung W, Kang H. Experimental investigation of production behaviors of methane hydrate saturated in porous rock[J]. Energy Sources, 2003, 25(8):845-856.
doi: 10.1080/00908310390207873
[26] Huang L, Ping G, Zhan S, et al. Experimental investigation into formation/dissociation characteristics of methane hydrate in consolidated sediments with resistance measurement[J]. Fuel, 2018, 234(15):985-995.
doi: 10.1016/j.fuel.2018.07.101
[27] 胡高伟, 业渝光, 张剑, 等. 松散沉积物中天然气水合物生成、分解过程与声学特性的实验研究[J]. 现代地质, 2008, 22(3):465-474.
[27] Hu G W, Ye Y G, Zhang J, et al. Experimental study on the formation,decomposition and acoustic characteristics of natural gas hydrate in loose sediments[J]. Geoscience, 2008, 22(3):465-474.
[28] Ren S R, Liu Y, Liu Y, et al. Acoustic velocity and electrical resistance of hydrate bearing sediments[J]. Journal of Petroleum Science & Engineering, 2010, 70(1/2):52-56.
[29] 张炜, 邵明娟, 姜重昕, 等. 世界天然气水合物钻探历程与试采进展[J]. 海洋地质与第四纪地质, 2018, 38(5):1-13.
[29] Zhang W, Shao M J, Jiang C X, et al. World progress of drilling and production test of natural gas hydrate[J]. Marine Geology and Quaternary, 2018, 38(5):1-13.
[30] 关进安, 樊栓狮, 梁德青, 等. 自然界天然气水合物勘探开发概述[J]. 新能源进展, 2019, 7(6):522-531.
[30] Guan J A, Fan S S, Liang D Q, et al. An overview on gas hydrate exploration and exploitation in natural fields[J]. Advances in New and Renewable Energy, 2019, 7(6):522-531.
[31] Nobes D C, Villinger H, Davis E E, et al. Estimation of marine sediment bulk physical properties at depth from seafloor geophysical measurements[J]. Journal of Geophysical Research Atmospheres, 1986, 91(14):14033-14043.
doi: 10.1029/JB091iB14p14033
[32] Waite W F, Winters W J, Mason D H. Methane hydrate formation in partially water-saturated Ottawa sand[J]. American Mineralogist, 2004, 89(8/9):1202-1207.
doi: 10.2138/am-2004-8-906
[33] Yousif M H, Li P M, Selim M S, et al. Depressurization of natural gas hydrate in Berea sandstone cores[J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1989, 8(1):71-88.
[34] Zatsepina O Y, Buffett B A. Nucleation of CO2-hydrate in a porous medium[J]. Fluid Phase Equilibria, 2002, 200(2):263-275.
doi: 10.1016/S0378-3812(02)00032-8
[35] Yama J A, Hase Y, Torii M. Paleostresses inferred from mesoscale faults in the Late Pliocene Hitoyoshi Formation;implications for the formation of vein-type ore deposits in southern Kyushu[C]// Electronic Imaging.International Society for Optics and Photonics, 2009.
[36] Buffett B A, Zatsepina O Y. Formation of gas hydrate from dissolved gas in natural porous media[J]. Marine Geology, 2000, 164(1/2):69-77.
doi: 10.1016/S0025-3227(99)00127-9
[37] 陈强, 刘昌岭, 邢兰昌, 等. 孔隙水垂向不均匀分布体系中水合物生成过程的电阻率变化[J]. 石油学报, 2016, 37(2):222-229.
doi: 10.7623/syxb201602008
[37] Chen Q, Liu C L, Xing L C, et al. Resistivity variation during hydrate formation inhomegeneous distribution system of pore water[J]. Journal of Oil, 2016, 37(2):222-229.
[38] Lech M, Skutnik Z, Bajda M, et al. Applications of electrical resistivity surveys in solving selected geotechnical and environmental problems[J]. Applied Sciences, 2020, 10(7):2263.
doi: 10.3390/app10072263
[39] Perez-Rosales C. On the relationship between formation resistivity factor and porosity[J]. Society of Petroleum Engineers Journal, 1982, 22(4):531-536.
doi: 10.2118/10546-PA
[40] 金学彬, 陈强, 邢兰昌, 等. 多孔介质中甲烷水合物聚散过程的交流阻抗谱响应特征[J]. 天然气工业, 2016, 36(3):120-127.
[40] Jin X B, Chen Q, Xing L C, et al. Response characteristics of AC impedance spectrum during the formation and dissociation of methane hydrate in porous media[J]. Natural Gas Industry, 2016, 36(3):120-127.
[41] 王彩程, 邢兰昌, 陈强, 等. 含甲烷水合物多孔介质的复电阻率频散特性与模型[J]. 科学技术与工程, 2017, 17(18): 46-54.
[41] Wang C C, Xing L C, Chen Q, et al. Frequency dispersion characteristics and modeling of complex resistivity of porous medium containing methane hydrate[J]. Science Technology and Engineering, 2017, 17(18):46-54.
[42] 牛佳乐, 邢兰昌, 魏伟, 等. 基于宽频电阻抗特性与阿尔奇公式的含水合物饱和度计算模型[J]. 计算机测量与控制, 2020, 28(8):250-255.
[42] Niu J L, Xing L C, Wei W, et al. Calculation model of hydrate saturation based on broadband electrical impedance characteristics and Archie formula[J]. Computer Measurement and Control, 2020, 28(8): 250-255.
[43] Chen Y F, Liang D Q, Wu N Y. In situ measurement of electrical resistivity of ocean sediments containing gas hydrates[J]. Applied Mechanics and Materials, 2013, 2743(432):104-108.
[44] Pandey L, Sain K, Joshi A K. Estimate of gas hydrate saturations in the Krishna-Godavari basin,eastern continental margin of India,results of expedition NGHP-02[J]. Marine and Petroleum Geology, 2019, 108(3): 581-594.
doi: 10.1016/j.marpetgeo.2018.12.009
[45] Feng C, Yang Z, Feng Z, et al. A novel method to estimate resistivity index of tight sandstone reservoirs using nuclear magnetic resonance logs[J]. Journal of Natural Gas Science and Engineering, 2020, 79(11):103358.
doi: 10.1016/j.jngse.2020.103358
[46] 许越, 刘兆彬. 四极法电阻率测量在石油管道防腐蚀中的应用[J]. 地质与勘探, 2016, 52(3):551-555.
[46] Xu Y, Liu Z B. Application of the four-electrode resistivity method to anti-corrosion design of oil pipelines[J]. Geology and Exploration, 2016, 52(3):551-555.
[47] 赵仕俊, 白云风, 张娟. 基于电阻率测量的一维天然气水合物模拟实验装置[J]. 石油机械, 2009, 37(3): 16-19.
[47] Zhao S J, Bai Y F, Zhang J. One-dimensional gas hydrate simulation experiment device based on resistivity measurement[J]. China Petroleum Machinery, 2009, 37(3):16-19.
[48] 杜燕, 何世辉, 黄冲, 等. 水合物合成电容特性与降压开采二维实验研究[J]. 西南石油大学学报:自然科学版, 2009, 31(4):107-111.
[48] Du Y, He S H, Huang C, et al. Two-dimensional experimental study on capacitance characteristics of hydrate synthesis and depressurization mining[J]. Journal of Southwest Petroleum University:Natural Science Edition, 2009, 31(4):107-111.
[49] Birkedal K A, Ersland G, Hauge L P, et al. Electrical resistivity measurements of CH4 hydrate-bearing sandstone during formation[C]// 7th International Conference on Gas Hydrates,Edinburgh,Scotland,United Kingdom, 2011:17-21.
[50] 李小森, 冯景春, 李刚, 等. 电阻率在天然气水合物三维生成及开采过程中的变化特性模拟实验[J]. 天然气工业, 2013, 33(7):18-23.
[50] Li X S, Feng J C, Li G, et al. An experimental study of resistivity variation in the 3D simulation of methane hydrate generation and production[J]. Natural Gas Industry, 2013, 33(7):18-23.
[51] 王炳辉, 王志华, 姜朋明, 等. 饱和砂土不同孔隙率的电阻率特性研究[J]. 岩土工程学报, 2017, 39(9): 1739-1745.
[51] Wang B H, Wang Z H, Jiang P M, et al. Electrical resistivity characteristics of saturated sand with varied porosities[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1739-1745.
[52] Li S X, Xia X R, Xuan J, et al. Resistivity in formation and decomposition of natural gas hydrate in porous medium[J]. Chinese Journal of Chemical Engineering, 2010, 18(1):39-42.
doi: 10.1016/S1004-9541(08)60320-1
[53] Wu J, Guo X, Sun X, et al. Flume experiment evaluation of resistivity probes as a new tool for monitoring gas migration in multilayered sediments[J]. Applied Ocean Research, 2020, 105(6):102415.
doi: 10.1016/j.apor.2020.102415
[54] 陈玉凤, 李栋梁, 梁德青, 等. 南海沉积物天然气水合物饱和度与电阻率的关系[J]. 石油学报, 2013, 34(3):507-512.
doi: 10.7623/syxb201303012
[54] Chen Y F, Li D L, Liang D Q, et al. Relationship between gas hydrate saturation and resistivity in sediments of the South China Sea[J]. Acta Petrolei Sinica, 2013, 34(3):507-512.
doi: 10.7623/syxb201303012
[55] Wu P, Li Y, Liu W, et al. Cementation failure behavior of consolidated gas hydrate-bearing sand[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018623.
[56] Spangenberg E. Modeling of the influence of gas hydrate content on the electrical properties of porous sediments[J]. Journal of Geophysical Research-Solid Earth, 2001, 106(4):6535-6548.
doi: 10.1029/2000JB900434
[57] Dong H, Sun J, Zhu J, et al. Developing a new hydrate saturation calculation model for hydrate-bearing sediments[J]. Fuel, 2019, 248:27-37.
doi: 10.1016/j.fuel.2019.03.038
[58] Li C, Liu C, Hu G, et al. Investigation on the multiparameter of hydrate-bearing sands using nano-focus X-ray computed tomography[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(3):2286-2296.
doi: 10.1029/2018JB015849
[59] 陈玉凤, 吴能友, 梁德青, 等. 基于分形孔隙模型的含天然气水合物沉积物电阻率数值模拟[J]. 天然气工业, 2018, 38(11): 128-134.
[59] Chen Y F, Wu N Y, Liang D Q, et al. Numerical simulation of resistivity of gas hydrate bearing sediments based on fractal pore model[J]. Natural Gas Industry, 2018, 38(11):128-134.
[60] 陈国旗, 李承峰, 刘昌岭, 等. 多孔介质中甲烷水合物的微观分布对电阻率的影响[J]. 新能源进展, 2019, 7(6):493-499.
[60] Chen G Q, Li C F, Liu C L, et al. Effect of microscopic distribution of methane hydrate on resistivity in porous media[J]. Progress in new energy, 2019, 7(6):493-499.
[61] Chen L T, Li N, Sun C Y, et al. Hydrate formation in sediments from free gas using a one-dimensional visual simulator[J]. Fuel, 2017, 197(1):298-309.
doi: 10.1016/j.fuel.2017.02.034
[62] 李彦龙, 陈强, 吴能友, 等. 电阻率层析成像技术在岩芯尺度水合物可视化探测中的应用[J]. 地质论评, 2020, 66(S1):84-86.
[62] Li Y L, Chen Q, Wu N Y, et al. Application of resistivity tomography in visualization detection of hydrate at core scale[J]. Geological Review, 2020, 66(S1):84-86.
[63] 李彦龙, 孙海亮, 孟庆国, 等. 沉积物中天然气水合物生成过程的二维电阻层析成像观测[J]. 天然气工业, 2019, 39(10): 132-138.
[63] Li Y L, Sun H, Meng Q G, et al. 2-D electrical resistivity tomography assessment of hydrate formation in sandy sediments[J]. Natural Gas Industry, 2019, 39(10):132-138.
[64] Archie G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 1942, 146(1):54-62.
doi: 10.2118/942054-G
[65] 田秘, 侯正猛, 李占东, 等. 变形后阿尔奇公式在特低渗储层解释中的应用[J]. 重庆理工大学学报:自然科学, 2017, 31(10):128-133.
[65] Tian M, Hou Z M, Li Z D, et al. Application of Archie formula in the interpretation of extra low permeability reservoir after deformation[J]. Journal of Chongqing University of Technology:Natural Science, 2017, 31(10):128-133.
[66] 张振城, 孙建孟, 马建海, 等. 阿尔奇公式a,m值对饱和度计算结果的影响[J]. 石油大学学报:自然科学版, 2004, 28(6): 27-30.
[66] Zhang Z C, Sun J M, Ma J H, et al. Effect of different values of a and m in Archie formula on water saturation[J]. Journal of the University of Petroleum:Edition of Natural Science, 2004, 28(6):27-30.
[67] 张庚骥. 电阻率测井在确定某些储层特性中的作用[J]. 测井技术, 2007, 31(3):197-202.
[67] Zhang G J. The electrical resistivity log as an aid in determining some reservoir characteristic[J]. Well Logging Technology, 2007, 31(3):197-202.
[68] Pearson C F. Natural gas hydrate deposits: A review of in situ properties[J]. Journal of Physical Chemistry, 1983, 87(21):4180-4185.
[69] 黄琴, 张建民, 蔡辉, 等. 基于主控因素识别低阻油层的评价方法[J]. 西安石油大学学报:自然科学版, 2017, 32(2):35-39.
[69] Huang Q, Zhang J M, Cai H, et al. Evaluation method for identifying low resistance reservoir based on main control factors[J]. Journal of Xi'an Shiyou University:Natural Science Edition, 2017, 32(2):35-39.
[70] Zhao J, Liu C, Li C, et al. Pore-Scale investigation of the electrical property and saturation exponent of Archie’s law in hydrate-bearing sediments[J]. Journal of Marine Science and Engineering, 2022, 10(1):111.
doi: 10.3390/jmse10010111
[71] Park T, Lee J Y, Kwon T H. Effect of pore size distribution on dissociation temperature depression and phase boundary shift of gas hydrate in various fine-grained sediments[J]. Energy & Fuels, 2018, 32(4):5321-5330.
doi: 10.1021/acs.energyfuels.8b00074
[72] Lu R, Stern L A, Du F W L, et al. The effect of brine on the electrical properties of methane hydrate[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11):10877-10892.
doi: 10.1029/2019JB018364
[73] Shankar U, Riedel M. Assessment of gas hydrate saturation in marine sediments from resistivity and compressional-wave velocity log measurements in the Mahanadi Basin,India[J]. Marine and Petroleum Geology, 2014, 58(7):265-277.
doi: 10.1016/j.marpetgeo.2013.10.007
[74] Jackson P D, Smith D T, Stanford P N. Resistivity-porosity-particle shape relationships for marine sands[J]. Geophysics, 1978, 43(6):1250-1268.
doi: 10.1190/1.1440891
[75] Anderson W G. Wettability literature survey-Part 3:The effects of wettability on the electrical properties of porous media[J]. Journal of Petroleum Technology, 1986, 38(12):1371-1378.
doi: 10.2118/13934-PA
[76] Spangenberg E. Pore space hydrate formation in a glass bead sample from methane dissolved in water[J]. Geophysical Research Letters, 2005, 32(24):1-4.
[77] Bahuguna R M, Pabla S S, Lal M, et al. Impact on estimation of water saturation values using laboratory determined a,m & n parameters: A case study[C]// Proceedings of the 6th International Conference & Exposition on Petroleum Geophysics, 2006:4-6.
[78] Li F G, Sun C Y, Li S L, et al. Experimental studies on the evolvement of electrical resistivity during methane hydrate formation in sediments[J]. Energy & Fuels, 2012, 26(10):6210-6217.
doi: 10.1021/ef301257z
[79] Moahamad A M, Hamada. Determination techniques of Archie’s parameters: a,m and n in heterogeneous reservoirs[J]. Journal of Geophysics and Engineering, 2017, 14(6):1358-1367.
doi: 10.1088/1742-2140/aa805c
[80] Cook A E, Waite W F. Archie’s saturation exponent for natural gas hydrate in coarse-grained reservoirs[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(3):2069-2089.
doi: 10.1002/jgrb.v123.3
[81] Jin Y, Li S, Yang D. Experimental and theoretical quantification of the relationship between electrical resistivity and hydrate saturation in porous media[J]. Fuel, 2020, 269:117378.
doi: 10.1016/j.fuel.2020.117378
[82] Winsauer W O, Shearin H M, Masson P H, et al. Resistivity of brine-saturated sands in relation to pore geometry[J]. AAPG Bulletin, 1952, 36(2):253-277.
[83] Wyllie M R J, Gregory A R. Formation factors of unconsolidated porous media: Influence of particle shape and effect of cementation[J]. Journal of Petroleum Technology, 1953, 5(4):103-110.
doi: 10.2118/223-G
[84] Rosales P C. Generalization of the maxwell equation for formation resistivity factors[J]. Journal of Petroleum Technology, 1976, 28(7):819-824.
doi: 10.2118/5502-PA
[85] 解茜草, 孙超, 仵杰. 砾岩地层电阻率与孔隙度和孔隙形状关系数值模拟[J]. 测井技术, 2015, 39(6):693-697.
[85] Xie Q C, Sun C, Wu J. Numerical simulation of relationship between resistivity and porosity and pore shape in conglomerate formation[J]. Well Logging Technology, 2015, 39(6):693-697.
[86] Zhang Z, Liu L, Li C, et al. Fractal analyses on saturation exponent in Archie’s law for electrical properties of hydrate-bearing porous media[J]. Journal of Petroleum Science and Engineering, 2021, 196(1):107642.
doi: 10.1016/j.petrol.2020.107642
[87] 赵发展, 蔡敏龙. 不同温压条件下砂岩manb值的变化特征[J]. 新疆石油地质, 1998(6):35-37.
[87] Zhao F Z, Cai M L. Characteristics of m,a,n and b values of sandstone under different temperature and pressure conditions[J]. Xinjiang Petroleum Geology, 1998(6):35-37.
[88] 熊学川, 刘向君, 梁利喜, 等. 围压对页岩岩电参数的影响研究[C]// 2019油气田勘探与开发国际会议论文集.西安石油大学、 陕西省石油学会: 西安石油大学, 2019:694-700.
[88] Xiong X C, Liu X J, Liang L X, et al. The experimental study of confining pressure effect on shale rock electrical parameters[C]// 2019 International Conference on Oil and Gas Field Exploration and Development.Xi'an Shiyou University, Shaanxi Petroleum Society: Xi'an Shiyou University, 2019:694-700.
[89] 孙建孟, 吴金龙, 于代国, 等. 阿尔奇参数实验影响因素分析[J]. 大庆石油地质与开发, 2006, 25(2):39-41.
[89] Sun J M, Wu J L, Yu D G, et al. Analysis of influencing factors of Archie parameter experiment[J]. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(2):39-41.
[90] 殷艳玲. 岩电参数影响因素研究[J]. 测井技术, 2007, 31(6):511-515.
[90] Yin Y L. Study on influencing factors of lithologica-electrical parameters[J]. Well Logging Technology, 2007, 31(6):511-515.
[1] 陈星河, 张超谟, 朱林奇, 张冲, 张占松, 郭建宏. 联合核磁共振测井与Thomeer模型评价碳酸盐岩储层饱和度[J]. 物探与化探, 2023, 47(1): 110-119.
[2] 唐军, 刘沁园, 赖强, 吴煜宇, 许巍. 白云岩声电各向异性实验测量及分析[J]. 物探与化探, 2022, 46(6): 1492-1499.
[3] 杨志斌, 周亚龙, 张富贵, 张舜尧, 孙忠军. 中国陆域冻土区浅表烃类地球化学特征及其成因分析[J]. 物探与化探, 2022, 46(3): 628-636.
[4] 朱学娟, 单沙沙, 殷梓原, 孔雪. PNN测井清污混注水淹层剩余油饱和度计算方法[J]. 物探与化探, 2021, 45(3): 679-685.
[5] 顾端阳, 窦文博, 丁富寿, 严力, 吕浩. 疏松砂岩气藏低阻气层成因及识别研究——以柴达木盆地涩北气田为例[J]. 物探与化探, 2020, 44(3): 649-655.
[6] 沙志彬, 万晓明, 赵忠泉, 梁金强, 杨瑞召, 白钰, 柴祎. 叠前同时反演技术在珠江口盆地西部海域天然气水合物储层预测中的应用[J]. 物探与化探, 2019, 43(3): 476-485.
[7] 付康伟, 张学强, 彭炎. BP神经网络算法在陆域天然气水合物成藏预测中的应用[J]. 物探与化探, 2019, 43(3): 486-493.
[8] 张富贵, 周亚龙, 张舜尧, 唐瑞玲, 王惠艳, 孙忠军. 热释汞:一种冻土区天然气水合物地球化学勘查新技术[J]. 物探与化探, 2019, 43(2): 329-337.
[9] 孙春岩, 王栋琳, 张仕强, 贺会策, 赵浩, 凌帆, 尹文斌. 深海甲烷电化学原位长期监测技术及其在海洋环境调查和天然气水合物勘探中的意义[J]. 物探与化探, 2019, 43(1): 1-16.
[10] 李洋, 刘东明, 林振洲, 王宇航, 贾定宇, 欧洋. 木里地区水合物钻孔井壁构造裂缝特征[J]. 物探与化探, 2019, 43(1): 84-89.
[11] 徐春华, 秦新龙, 崔健, 陈振宁, 肖晓牛, 伍宵, 唐俊, 张雷. 钻孔测井资料在深部找矿预测中的应用——以福建梅仙镇峰岩—谢坑矿区找矿应用为例[J]. 物探与化探, 2018, 42(5): 873-881.
[12] 葛志广, 陈永生, 周小仙. 漠河冻土带天然气水合物地震采集关键技术[J]. 物探与化探, 2018, 42(2): 285-291.
[13] 范雨霏, 潘保芝, 张芳. 复杂孔隙几何形态导电理论与火山岩饱和度模型研究[J]. 物探与化探, 2018, 42(1): 172-177.
[14] 徐明才, 刘建勋, 李培, 张凯, 王凯, 王小江, 张保卫, 王广科, 柴铭涛, 高景华. 羌塘盆地戈木错地区天然气水合物地震探测[J]. 物探与化探, 2017, 41(6): 1220-1227.
[15] 秦臻, 林振洲, 潘和平, 方思南, 邓呈祥, 覃瑞东, 纪扬, 徐伟. 木里水合物测井评价系统[J]. 物探与化探, 2017, 41(6): 1275-1280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com