Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (2): 428-436    DOI: 10.11720/wtyht.2024.1260
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于特征加权的KNN模型岩性识别方法
郭雨姗1(), 王万银1,2,3()
1.长安大学 地质工程与测绘学院,陕西 西安 710054
2.中国科学院 海洋地质与环境重点实验室,山东 青岛 266071
3.海洋油气勘探国家工程研究中心,北京 100028
A method for identifying lithology based on a feature-weighted KNN model
GUO Yu-Shan1(), WANG Wan-Yin1,2,3()
1. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, China
2. Key Laboratory of Marine Geology & Environment, Qingdao 266071, China
3. National Engineering Research Center of Offshore Oil and Gas Exploration, Beijing 100028, China
全文: PDF(4553 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

岩性识别是一项重要的地质工作,为固体矿产勘探与油气勘探奠定了坚实的地质基础。岩石物性是连接岩性和地球物理场的桥梁,可以通过物性之间的差异进行岩性识别,但不同岩石的物性数据往往存在一定重合,仅靠交会图无法准确地识别岩性。KNN(K近邻)模型是一种简单、直接的机器学习方法,准确度和灵敏度都很高,适用于多分类问题。基于此,本文将基于特征加权的KNN模型引入岩性识别中,该方法将传统KNN模型与属性特征的信息增益相结合,对不同特征赋予不同权重,可以直观地反映属性特征对分类的重要程度。实验证明,相比于传统KNN方法,基于特征加权的KNN模型对岩性交界处的识别能力有大幅提升,整体提高了岩性识别的准确性和稳定性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭雨姗
王万银
关键词 KNN岩性识别信息增益特征权重    
Abstract

Lithology identification, as a major geological task, strongly underpins the exploration of solid minerals, oil, and gas. Since the physical properties of rocks bridge lithologies and geophysical fields, their differences can be used for lithology identification. However, the physical property data of different rocks frequently overlap to some extent, posing challenges to accurate lithology identification using cross plots alone. The K-nearest neighbor (KNN) model is suitable for multi-class classification since it is a simple and direct machine learning method with high accuracy and sensitivity. This study introduced a feature-weighted KNN model for lithology identification. In this model, different weights were assigned to different features by combining the conventional KNN model with the information gain of attribute features. This allowed for intuitive reflection of the importance of attribute features to classification. Experiments show that compared to the conventional KNN model, the feature-weighted KNN model can more significantly identify lithologic boundaries, thus improving the overall accuracy and stability of lithology identification.

Key wordsKNN    lithology identification    information gain    feature weight
收稿日期: 2023-06-15      修回日期: 2023-10-25      出版日期: 2024-04-20
ZTFLH:  P631  
基金资助:中海石油有限公司科技项目“中国近海盆地潜在富油凹陷资源潜力、成藏机制与突破方向”之课题“中国近海潜在富油凹陷深部构造差异性研究”项目(CCL2021RCPS0167KQN)
通讯作者: 王万银
作者简介: 郭雨姗(1997-),女,长安大学硕士研究生,主要从事重、磁数据处理与解释工作。Email:gys103319@163.com
引用本文:   
郭雨姗, 王万银. 基于特征加权的KNN模型岩性识别方法[J]. 物探与化探, 2024, 48(2): 428-436.
GUO Yu-Shan, WANG Wan-Yin. A method for identifying lithology based on a feature-weighted KNN model. Geophysical and Geochemical Exploration, 2024, 48(2): 428-436.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1260      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I2/428
Fig.1  模型岩性分布
岩石名称 密度/
(kg·m-3)
磁化率/
(10-5 SI)
电阻率/
(Ω·m)
板岩 2630~2850 0~160 3~8
片麻岩 2570~2830 180~280 40~60
花岗岩 2580~2640 0~160 10~30
Table 1  模型物性参数
Fig.2  物性参数分布
a—模型密度分布;b—模型磁化率分布;c—模型电阻率分布
Fig.3  250个训练样本物性参数交会图
Fig.4  435个训练样本物性参数交会图
Fig.5  870个训练样本物性参数交会图
训练样本/个 平均准确率/% 方差/% RMSE/%
250 90.22 0.42 11.68
435 90.81 0.52 11.58
870 90.09 0.26 11.09
Table 2  模型准确率与误差统计
训练样本/个 最佳K 准确率/%
250 4 91.41
435 20 93.95
870 21 92.51
Table 3  模型最佳K值及准确率
样本个数/个 特征 信息增益值 权重值
250 密度 0.8311 0.3145
磁化率 0.6502 0.2461
电阻率 1.1610 0.4394
435 密度 0.6282 0.2628
磁化率 0.7167 0.2998
电阻率 1.0459 0.4374
870 密度 0.7041 0.2754
磁化率 0.7096 0.2776
电阻率 1.1425 0.4470
Table 4  特征信息增益与权重统计
训练样本/个 平均准确率/% 方差/% RMSE/%
250 93.68 0.20 7.70
435 93.62 0.20 7.86
870 93.76 0.35 8.52
Table 5  基于特征加权模型准确率与误差统计
Fig.6  两种模型在不同K值下准确率折线
训练样本/个 最佳K 错误率/%
传统KNN方法 基于特征加
权的KNN方法
250 4 8.59 4.17
435 20 6.05 4.78
870 21 7.49 4.25
Table 6  模型错误率对比
Fig.7  模型在最佳K值下的识别结果
(a)~(c)—250、435、870训练样本在传统KNN模型下的识别结果;(d)~(f)—250、435、870训练样本在基于特征加权KNN模型下的识别结果
[24] Feng G H, Wu J X. A literature review on the improvement of KNN algorithm[J]. Library and Information Service, 2012, 56(21):97-100,118.
[25] Stone M. Cross-validatory choice and assessment of statistical predictions[J]. Journal of the Royal Statistical Society Series B:Statistical Methodology, 1974, 36(2):111-133.
[26] 孙傲, 赵礼峰. 基于信息增益和基尼不纯度的K近邻算法[J]. 计算机技术与发展, 2019, 29(9):51-54,116.
[26] Sun A, Zhao L F. K-nearest neighbor algorithm based on information gain and gini impurity[J]. Computer Technology and Development, 2019, 29(9):51-54,116.
[27] 袁彪. 基于机器学习的岩性识别模型研究[D]. 北京: 中国地质大学(北京), 2021
[27] Yuan B. Research on lithology identification Model based on Machine Learning[D]. Beijing: China University of Geosciences (Beijing), 2021.
[28] 范永东. 模型选择中的交叉验证方法综述[D]. 太原: 山西大学, 2013.
[28] Fan Y D. Review of cross-validation methods in model selection[D]. Taiyuan: Shanxi University, 2013.
[1] 付光明, 严加永, 张昆, 等. 岩性识别技术现状与进展[J]. 地球物理学进展, 2017, 32(1):26-40.
[1] Fu G M, Yan J Y, Zhang K, et al. Current status and progress of lithology identification technology[J]. Progress in Geophysics, 2017, 32(1):26-40.
[2] 靳军, 刘楼军, 邵雨, 等. 综合地球物理方法识别准噶尔盆地的岩性圈闭[J]. 石油地球物理勘探, 2002, 37(3):287-290,299-306.
[2] Jin J, Liu L J, Shao Y, et al. Discussion on identifying method for Identification of lithologic traps in Junggar Basin by comprehensive geophysical method[J]. Oil Geophysical Prospecting, 2002, 37(3):287-290,299-306.
[3] 严加永, 吕庆田, 陈向斌, 等. 基于重磁反演的三维岩性填图试验——以安徽庐枞矿集区为例[J]. 岩石学报, 2014, 30(4):1041-1053.
[3] Yan J Y, Lyu Q T, Chen X B, et al. 3D lithologic mapping test based on 3D inversion of gravity and magnetic data:A case study in Lu-Zong ore concentration district,Anhui Province[J]. Acta Petrologica Sinica, 2014, 30(4):1041-1053.
[4] 付光明. 基于重磁三维反演的岩性识别与立体填图——以铜陵矿集区为例[D]. 抚州: 东华理工大学, 2017.
[4] Fu G M. Lithology identification and stereo mapping based on gravity and magnetic 3D inversion-taking Tongling ore concentration area as an example[D]. Fuzhou: East China Institute of Technology, 2017.
[5] 赵建, 高福红. 测井资料交会图法在火山岩岩性识别中的应用[J]. 世界地质, 2003, 22(2):136-140.
[5] Zhao J, Gao F H. Application of crossplots based on well log data in identifying volcanic lithology[J]. World Geology, 2003, 22(2):136-140.
[6] 吴磊, 徐怀民, 季汉成. 基于交会图和多元统计法的神经网络技术在火山岩识别中的应用[J]. 石油地球物理勘探, 2006, 41(1):81-86,122,128.
[6] Wu L, Xu H M, Ji H C. Application of neural networks technique based on crosspiot and multielement statistics to recognition of volcanic rocks[J]. Oil Geophysical Prospecting, 2006, 41(1):81-86,122,128.
[7] 张涛, 莫修文. 基于交会图与模糊聚类算法的复杂岩性识别[J]. 吉林大学学报:地球科学版, 2007, 37(S1):109-113.
[7] Zhang T, Mo X W. Complex lithology identification based on crossplot and fuzzy clustering algorithm[J]. Journal of Jilin University:Earth Science Edition, 2007, 37(S1):109-113.
[8] 关涛. 基于交会图和贝叶斯聚类分析法的岩性识别方法[J]. 科学技术与工程, 2013, 13(4):976-979.
[8] Guan T. Method of lithologic identification based on crossplot and Bayesian cluster analysis algorithm[J]. Science Technology and Engineering, 2013, 13(4):976-979.
[9] 张晏奇. 测井资料交会图法在火山岩岩性识别中的应用探讨[J]. 西部探矿工程, 2019, 31(4):53-54.
[9] Zhang Y Q. Discussion on the application of logging data crossplot method in volcanic rock lithology identification[J]. West-China Exploration Engineering, 2019, 31(4):53-54.
[10] 许振浩, 马文, 李术才, 等. 岩性识别:方法、现状及智能化发展趋势[J]. 地质论评, 2022, 68(6):2290-2304.
[10] Xu Z H, Ma W, Li S C, et al. Lithology identification:Method,research status and intelligent development trend[J]. Geological Review, 2022, 68(6):2290-2304.
[11] Wang X D, Yang S C, Zhao Y F, et al. Lithology identification using an optimized KNN clustering method based on entropy-weighed cosine distance in Mesozoic strata of Gaoqing field,Jiyang depression[J]. Journal of Petroleum Science and Engineering, 2018, 166:157-174.
doi: 10.1016/j.petrol.2018.03.034
[12] Silva A A, Tavares M W, Carrasquilla A, et al. Petrofacies classification using machine learning algorithms[J]. Geophysics, 2020, 85(4):WA101-WA113.
[13] 蔡泽园, 鲁宝亮, 熊盛青, 等. 基于自适应核密度的贝叶斯概率模型岩性识别方法研究[J]. 物探与化探, 2020, 44(4):919-927.
[13] Cai Z Y, Lu B L, Xiong S Q, et al. Lithology identification based on Bayesian probability using adaptive kernel density[J]. Geophysical and Geochemical Exploration, 2020, 44(4):919-927.
[14] 牟丹, 张丽春, 徐长玲. 3种经典机器学习算法在火山岩测井岩性识别中的对比[J]. 吉林大学学报:地球科学版, 2021, 51(3):951-956.
[14] Mou D, Zhang L C, Xu C L. Comparison of three classical machine learning algorithms for lithology identification of volcanic rocks using well logging data[J]. Journal of Jilin University:Earth Science Edition, 2021, 51(3):951-956.
[15] 陈玉林, 李戈理, 杨智新, 等. 基于KNN算法识别合水地区长7储层岩性岩相[J]. 测井技术, 2020, 44(2):182-185.
[15] Chen Y L, Li G L, Yang Z X, et al. Identification of lithology and lithofacies of Chang 7 reservoir in Heshui area by KNN algorithm[J]. Well Logging Technology, 2020, 44(2):182-185.
[16] 刘述昌, 张忠林. 基于中心向量的多级分类KNN算法研究[J]. 计算机工程与科学, 2017, 39(9):1758-1764.
[16] Liu S C, Zhang Z L. A multi-stage classification KNN algorithm based on center vector[J]. Computer Engineering & Science, 2017, 39(9):1758-1764.
[17] Chen Y W, Zhou L D, Tang Y, et al. Fast neighbor search by using revised k-d tree[J]. Information Sciences, 2019, 472:145-162.
doi: 10.1016/j.ins.2018.09.012
[18] 孙可, 龚永红, 邓振云. 一种高效的K值自适应的SA-KNN算法[J]. 计算机工程与科学, 2015, 37(10):1965-1970.
[18] Sun K, Gong Y H, Deng Z Y. An efficient SA-KNN algorithm with adaptive Kvalue[J]. Computer Engineering & Science, 2015, 37(10):1965-1970.
[19] 肖辉辉, 段艳明. 基于属性值相关距离的KNN算法的改进研究[J]. 计算机科学, 2013, 40(S2):157-159,187.
[19] Xiao H H, Duan Y M. Research on improvement of KNN algorithm based on correlation distance of attribute values[J]. Computer Science, 2013, 40(S2):157-159,187.
[20] 赵彤彤, 张春雷, 张春雨, 等. 基于模糊熵的KNN分类模型在岩性识别中的应用[J]. 计算机工程与应用, 2018, 54(24):260-265.
doi: 10.3778/j.issn.1002-8331.1709-0084
[20] Zhao T T, Zhang C L, Zhang C Y, et al. Application of KNN classification model based on fuzzy entropy in lithology recognition[J]. Computer Engineering and Applications, 2018, 54(24):260-265.
doi: 10.3778/j.issn.1002-8331.1709-0084
[21] 王林, 王禹杰. Entropy-KNN算法在岩性识别中的应用研究[J]. 安徽建筑, 2021, 28(5):95-97.
[21] Wang L, Wang Y J. Application of entropy-KNN algorithm in lithology identification[J]. Anhui Architecture, 2021, 28(5):95-97.
[22] 朱浩, 曹宁, 鹿浩, 等. 基于特征加权KNN的非侵入式负荷识别方法[J]. 电子测量技术, 2022, 45(8):70-75.
[22] Zhu H, Cao N, Lu H, et al. Non-intrusive load identification method based on feature weighted KNN[J]. Electronic Measurement Technology, 2022, 45(8):70-75.
[23] Cover T, Hart P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1):21-27.
doi: 10.1109/TIT.1967.1053964
[24] 奉国和, 吴敬学. KNN分类算法改进研究进展[J]. 图书情报工作, 2012, 56(21):97-100,118.
[1] 江丽, 张智谟, 王琦玮, 封志兵, 张博程, 任腾飞. 基于不同机器学习模型的石油测井数据岩性分类对比研究[J]. 物探与化探, 2024, 48(2): 489-497.
[2] 杨朝义, 朱乾坤, 揭绍鹏, 孔垂爱, 沙有财, 钟志勇, 沈啟武, 陈志军, 马火林. 云南普朗铜矿井孔测井资料综合应用[J]. 物探与化探, 2023, 47(1): 14-21.
[3] 王宗仁, 文畅, 谢凯, 盛冠群, 贺建飚. 多尺度时频空三域特征联合下的储层岩性识别方法[J]. 物探与化探, 2023, 47(1): 81-90.
[4] 蔡泽园, 鲁宝亮, 熊盛青, 王万银. 基于自适应核密度的贝叶斯概率模型岩性识别方法研究[J]. 物探与化探, 2020, 44(4): 919-927.
[5] 覃瑞东, 林振洲, 潘和平, 秦臻, 邓呈祥, 纪扬, 徐伟. 木里地区水合物及岩性测井识别方法[J]. 物探与化探, 2017, 41(6): 1088-1098.
[6] 周游, 高刚, 桂志先, 周倩, 蔡伟祥, 龚屹, 杨亚华. 灰质发育背景下识别浊积岩优质储层的技术研究——以东营凹陷董集洼陷为例[J]. 物探与化探, 2017, 41(5): 899-906.
[7] 邓呈祥, 高文利, 潘和平, 孔广胜, 方思南, 林振洲. 庐枞矿集区科学钻探的岩性识别方法[J]. 物探与化探, 2015, 39(6): 1144-1149.
[8] 张莹, 潘保芝. 支持向量机与微电阻率成像测井识别火山岩岩性[J]. 物探与化探, 2011, 35(5): 634-638,642.
[9] 孙歧峰, 白清云. 转换横波阻抗的求取[J]. 物探与化探, 2011, 35(1): 93-96.
[10] 陈冬, 魏修成, 季玉新.
卡拉沙依组薄互层岩性识别技术
[J]. 物探与化探, 2010, 34(3): 320-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com