Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (2): 403-410    DOI: 10.11720/wtyht.2024.1054
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
来凤地区龙马溪组含气页岩测井识别——以WY1井为例
裴圣良1,2(), 屈建新3, 张鹏4()
1.桂林理工大学 地球科学学院,广西 桂林 541006
2.中国地质环境监测院,北京 100081
3.内蒙古煤炭地质勘查(集团) 一零九有限公司,内蒙古 呼伦贝尔 021008
4.六盘水师范学院 矿业与土木工程学院,贵州 六盘水 553004
Log-based identification of gas-bearing shales in the Longmaxi Formation of the Laifeng area: A case study of well WY1
PEI Sheng-Liang1,2(), QU Jian-Xin3, ZHANG Peng4()
1. College of Earth Sciences, Guilin University of Technology, Guilin 541006, China
2. China Institute of Geo-Envronmental Monitoring, Beijing 100081, China
3. Inner Mongolia Coal Geological Exploration (Group) 109 Co., Ltd., Hulunbuir 021008, China
4. School of Mining and Civil Engineering, Liupanshui Normal University, Liupanshui 553004, China
全文: PDF(5106 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

湖北龙马溪组海相页岩是除四川盆地外可能实现页岩气勘探突破点之一,测井技术是一种十分成熟的油气勘探开发研究手段,本文以来凤地区WY1井的测井为基础,对龙马溪组含气页岩层段测井响应特征进行系统研究。结果表明,WY1井龙马溪组含气页岩层段具有高自然伽马、高铀、高钍、高补偿中子、高声波时差及低密度的测井响应特征,深、浅侧向电阻率低于下伏宝塔组碳酸盐岩,高于砂质页岩,且正差异反映岩层中发育高角度裂缝的层段。通过测井曲线叠合以及交会图版分析发现,含气页岩层自然伽马—岩性密度测井叠合曲线及声波时差—岩性密度测井叠合曲线具有明显的正差异,而自然伽马—补偿中子和声波时差—补偿中子呈现明显的负差异,且声波时差—岩性密度叠合测井曲线对于含气层段的指示作用最为准确;声波时差—补偿中子测井交会图、补偿中子—自然伽马测井交会图以及深侧向电阻率—补偿中子测井交会图对于富有机质含气页岩的识别作用最明显。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
裴圣良
屈建新
张鹏
关键词 湖北页岩气龙马溪组富有机质页岩测井识别    
Abstract

Except for the Sichuan Basin, the marine shales in the Longmaxi Formation in Hubei show great potential for shale gas exploration. Logging technology is highly mature in the exploration and development of hydrocarbons. This study systematically analyzed the log response characteristics of gas-bearing shales in the Longmaxi Formation based on logs obtained from well WY1 in the Laifeng area. As indicated by the analysis results, the gas-bearing shales of the Longmaxi Formation in well WY1 are characterized by high natural-gamma-ray values, high contents of uranium, thorium, and compensated neutrons, high interval transit time, and low density. Their deep and shallow lateral resistivity is lower than that of the underlying Baota Formation carbonate rocks but is higher than that of the sandy shales. Moreover, the positive differences indicate that high-angle fractures occur in the shales. The superimposition of log curves and the analysis of cross plots for gas-bearing shales reveal that ① the superimposed log curves of both natural gamma ray-lithologic density and interval transit time-lithologic density show significant positive differences, while those of both natural gamma ray-compensated neutrons and interval transit time-compensated neutrons show significant negative differences; ② the superimposed log curves of interval transit time-lithologic density indicate the gas-bearing intervals the most accurately; ③ the organic-rich gas-bearing shales can be identified the most effectively using the log cross plots of interval transit time-compensated neutrons, compensated neutrons-natural gamma ray, and deep lateral resistivity-compensated neutrons.

Key wordsHubei    shale gas    Longmaxi Formation    organic-rich shale    log-based identification
收稿日期: 2023-02-15      修回日期: 2023-05-11      出版日期: 2024-04-20
ZTFLH:  TE132  
基金资助:自然资源部矿山生态效应与系统修复重点实验室开放基金项目(MEER-2023-03);中国地质调查局项目(DD20230090)
通讯作者: 张鹏
作者简介: 裴圣良(1992-),男,高级工程师,长期从事矿山地质环境调查与生态修复工作。Email:peisl@glut.edu.cn
引用本文:   
裴圣良, 屈建新, 张鹏. 来凤地区龙马溪组含气页岩测井识别——以WY1井为例[J]. 物探与化探, 2024, 48(2): 403-410.
PEI Sheng-Liang, QU Jian-Xin, ZHANG Peng. Log-based identification of gas-bearing shales in the Longmaxi Formation of the Laifeng area: A case study of well WY1. Geophysical and Geochemical Exploration, 2024, 48(2): 403-410.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1054      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I2/403
Fig.1  研究区地质背景
Fig.2  WY1井综合测井
Fig.3  WY1井龙马溪组泥页岩高角度裂缝照片
a—913.31~913.97m岩心照片,高角度剪切裂缝,方解石充填;b—934.49~934.92m岩心照片,平行高角度剪切缝
Fig.4  WY1井测井综合解释
岩性 含气量 自然伽马/API 深侧向电阻率
/(Ω·m)
浅侧向电阻率
/(Ω·m)
岩性密度/
(g·cm-3)
补偿中子/% 声波时差/(μs·m-1)
黑色泥页岩 180.0~495.0 48.5~876.5 16.0~717.5 2.63~2.71 4.0~18.5 195.0~269.0
灰色泥页岩 204.0~305.0 27.0~313.5 20.0~232.5 2.67~2.71 5.0~17.5 206.0~263.0
粉砂质泥岩 230.0~300.0 87.5~63.5 75.0~495.0 2.65~2.70 9.0~11.5 203.0~234.5
200.0~250.0 120.0~1000.0 80.0~770.0 2.64~2.72 6.0~10.0 192.0~211.0
泥质粉砂岩 150.0~230.0 120.0~1300.0 100.0~1100.0 2.66~2.71 3.5~9.5 192.0~206.5
Table 1  WY1井龙马溪组泥页岩测井响应特征
Fig.5  WY1井龙马溪组泥页岩测井识别交会图
[1] 聂海宽, 张金川, 李玉喜. 四川盆地及其周缘下寒武统页岩气聚集条件[J]. 石油学报, 2011, 32(6):959-967.
doi: 10.7623/syxb201106005
[1] Nie H K, Zhang J C, Li Y X. Accumulation conditions of the Lower Cambrian shale gas in the Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2011, 32(6):959-967.
[2] 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7):15-18,131-132.
[2] Zhang J C, Jin Z J, Yuan M S. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24(7):15-18,131-132.
[3] 董大忠, 邹才能, 杨桦, 等. 中国页岩气勘探开发进展与发展前景[J]. 石油学报, 2012, 33(S1):107-114.
doi: 10.7623/syxb2012S1013
[3] Dong D Z, Zou C N, Yang H, et al. Progress and prospects of shale gas exploration and development in China[J]. Acta Petrolei Sinica, 2012, 33(S1):107-114.
doi: 10.7623/syxb2012S1013
[4] 游声刚, 郭茜, 耿小烬, 等. 关于我国页岩气产业的思考[J]. 金属矿山, 2014(12):3-7.
[4] You S G, Guo Q, Geng X J, et al. Thinking about China’s shale gas industry[J]. Metal Mine, 2014(12):3-7.
[5] 余致理, 肖晖, 宋伟, 等. H202井区H3平台深层页岩气压裂效果分析[J]. 重庆科技学院学报:自然科学版, 2022, 24(3):29-34,73.
[5] Yu Z L, Xiao H, Song W, et al. Analysis of fracturing effect of deep shale gas on H3 platform in H202 area[J]. Journal of Chongqing University of Science and Technology:Natural Sciences Edition, 2022, 24(3):29-34,73.
[6] 梁成钢, 欧成华, 张金风, 等. 湖相页岩油建产区小层构造可视化精细建模——以吉木萨尔芦草沟组为例[J]. 重庆科技学院学报:自然科学版, 2022, 24(2):16-22.
[6] Liang C G, Ou C H, Zhang J F, et al. Visual fine modeling of small layer structure in lacustrine shale oil construction and production area:A case of the Lucaogou shale oil formation in jimusar sag[J]. Journal of Chongqing University of Science and Technology:Natural Sciences Edition, 2022, 24(2):16-22.
[7] 岳鹏升, 石乔, 岳来群, 等. 中国页岩气近期勘探开发进展[J]. 天然气勘探与开发, 2017, 40(3):38-44.
[7] Yue P S, Shi Q, Yue L Q, et al. The latest progress of shale gas exploration and development in China[J]. Natural Gas Exploration and Development, 2017, 40(3):38-44.
[8] 李博, 魏国庆, 洪克岩, 等. 中国南方盆外复杂构造区页岩气井评价与认识——以湖北来凤咸丰区块来页1井为例[J]. 天然气工业, 2016, 36(8):29-35.
[8] Li B, Wei G Q, Hong K Y, et al. Evaluation and understanding on the shale gas wells in complex tectonic provinces outside Sichuan Basin,South China:A case study from Well Laiye 1 in Laifeng-Xianfeng Block,Hubei[J]. Natural Gas Industry, 2016, 36(8):29-35.
[9] 聂海宽, 唐玄, 边瑞康. 页岩气成藏控制因素及中国南方页岩气发育有利区预测[J]. 石油学报, 2009, 30(4):484-491.
doi: 10.7623/syxb200904002
[9] Nie H K, Tang X, Bian R K. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J]. Acta Petrolei Sinica, 2009, 30(4):484-491.
doi: 10.7623/syxb200904002
[10] 李斌, 胡博文, 罗群. 湖南保靖地区龙马溪组层序地层及沉积微相研究[J]. 地质与勘探, 2017, 53(6):1229-1239.
[10] Li B, Hu B W, Luo Q. A study on sequence stratigraphy and sedimentary microfacies of longmaxi formation of early Silurian in the Baojing area,Hunan Province[J]. Geology and Exploration, 2017, 53(6):1229-1239.
[11] 李瑶, 谢锐杰, 黄安, 等. 川西坳陷优质烃源岩的识别及分布特征[J]. 重庆科技学院学报:自然科学版, 2022, 24(3):9-13.
[11] Li Y, Xie R J, Huang A, et al. Identification method and distribution characteristics of high quality source rocks in West Sichuan depression[J]. Journal of Chongqing University of Science and Technology:Natural Sciences Edition, 2022, 24(3):9-13.
[12] 王秀平, 牟传龙, 肖朝晖, 等. 鄂西来凤—咸丰地区五峰组—龙马溪组岩石学特征及其成因[J]. 石油与天然气地质, 2019, 40(1):50-66.
[12] Wang X P, Mou C L, Xiao Z H, et al. Petrologic characteristics and genesis analysis of the Ordovician Wufeng Formation-Silurian Longmaxi Formation in Laifeng-Xianfeng area of western Hubei[J]. Oil & Gas Geology, 2019, 40(1):50-66.
[13] 郑宇龙, 牟传龙, 肖朝晖, 等. 复杂构造区页岩气储层特征及含气性控制因素——以湖北来凤—咸丰区块来地1井龙马溪组为例[J]. 海相油气地质, 2020, 25(2):108-120.
[13] Zheng Y L, Mou C L, Xiao Z H, et al. Characteristics and gas-bearing controlling factors of shale gas reservoir in complex tectonic provinces:A case from the Lower Silurian Longmaxi Formation of Well Laidi 1 in Laifeng-Xianfeng block,Hubei Province[J]. Marine Origin Petroleum Geology, 2020, 25(2):108-120.
[14] 刘子驿, 张金川, 刘飏, 等. 湘鄂西地区五峰—龙马溪组泥页岩黄铁矿粒径特征[J]. 科学技术与工程, 2016, 16(26):34-41.
[14] Liu Z Y, Zhang J C, Liu Y, et al. The particle size characteristics of pyrite in western Hunan and Hubei areas’ Wufeng-longmaxi formation shale[J]. Science Technology and Engineering, 2016, 16(26):34-41.
[15] 姜生玲, 毛曼, 洪克岩, 等. 湘鄂西地区下寒武统牛蹄塘组页岩气聚集条件及含气性影响因素[J]. 海相油气地质, 2018, 23(1):75-82.
[15] Jiang S L, Mao M, Hong K Y, et al. Conditions of shale gas accumulation and gas-bearing factors of lower Cambrian niutitang formation in western hu’nan and Hubei[J]. Marine Origin Petroleum Geology, 2018, 23(1):75-82.
[16] 何治亮, 聂海宽, 张钰莹. 四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘, 2016, 23(2):8-17.
doi: 10.13745/j.esf.2016.02.002
[16] He Z L, Nie H K, Zhang Y Y. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016, 23(2):8-17.
[17] 车世琦. 测井资料用于页岩岩相划分及识别——以涪陵气田五峰组—龙马溪组为例[J]. 岩性油气藏, 2018, 30(1):121-132.
[17] Che S Q. Shale lithofacies identification and classification by using logging data:A case of Wufeng-Longmaxi Formation in Fuling Gas Field,Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1):121-132.
[18] 李俊堂, 王如江, 高彬, 等. 新景煤矿保安区煤体结构特征及测井模型构建[J]. 矿业安全与环保, 2022, 49(2):72-77.
[18] Li J T, Wang R J, Gao B, et al. Characteristics of coal structure and construction of well logging model in Baoan block of Xinjing Mine[J]. Mining Safety & Environmental Protection, 2022, 49(2):72-77.
[19] 王权铭, 杨宇江, 路增祥, 等. 基于勒让德多项式逼近的钻孔岩性分布特征预测模型[J]. 金属矿山, 2022(3):65-70.
[19] Wang Q M, Yang Y J, Lu Z X, et al. Prediction model of borehole lithology distribution characteristics based on Legendre polynomial approximation[J]. Metal Mine, 2022(3):65-70.
[20] 李贵杰, 张建民, 岳爱忠, 等. 砂泥岩地层中气体对补偿中子测井的影响[J]. 测井技术, 2005, 29(6):515-516,527,571.
[20] Li G J, Zhang J M, Yue A Z, et al. Effect of gas in the sand-mudstone layer on compensated neutron log[J]. Well Logging Technology, 2005, 29(6):515-516,527,571.
[21] 张宏学. 煤系气储层渗透率解析模型研究进展[J]. 矿业安全与环保, 2021, 48(4):92-98.
[21] Zhang H X. Research progress on analytical models of permeability for coal measure gas reservoir[J]. Mining Safety & Environmental Protection, 2021, 48(4):92-98.
[22] 张晋言. 页岩油测井评价方法及其应用[J]. 地球物理学进展, 2012, 27(3):1154-1162.
[22] Zhang J Y. Well logging evaluation method of shale oil reservoirs and its applications[J]. Progress in Geophysics, 2012, 27(3):1154-1162.
[23] 刘浩, 侯吉峰, 姜永东, 等. 煤与页岩中瓦斯解吸特性对比实验研究[J]. 矿业安全与环保, 2018, 45(3):1-5.
[23] Liu H, Hou J F, Jiang Y D, et al. Experimental study on desorption characteristics of gas in coal and shale[J]. Mining Safety & Environmental Protection, 2018, 45(3):1-5.
[24] 王濡岳, 丁文龙, 王哲, 等. 页岩气储层地球物理测井评价研究现状[J]. 地球物理学进展, 2015, 30(1):228-241.
[24] Wang R Y, Ding W L, Wang Z, et al. Progress of geophysical well logging in shale gas reservoir evaluation[J]. Progress in Geophysics, 2015, 30(1):228-241.
[25] 张永泽, 刘俊新, 冒海军, 等. 单轴压缩下页岩力学特性的各向异性试验研究[J]. 金属矿山, 2015(12):33-37.
[25] Zhang Y Z, Liu J X, Mao H J, et al. Anisotropic experimental study on mechanical properties of shale under uniaxial compression[J]. Metal Mine, 2015(12):33-37.
[26] 周永刚, 戴黎明, 田振环, 等. 鲁北平源南部QK4钻孔岩心特征及第四纪地层划分[J]. 物探与化探, 2023, 47(1):56-64.
[26] Zhou Y G, Dai L M, Tian Z H, et al. Core characterics and Quaternary Stratigraphic division of borehobe QK4 in southern Lubei Plain[J]. Geophysical and Geochemical Exploration, 2023, 47(1):55-64.
[1] 何希鹏, 刘明, 薛野, 李彦婧, 何贵松, 孟庆利, 张勇, 刘昊娟, 蓝加达, 杨帆. 渝东南复杂构造区常压页岩气地球物理勘探实践及攻关方向[J]. 物探与化探, 2024, 48(2): 314-326.
[2] 薛野, 杨帆, 赵苏城, 蓝加达. 彭水地区残留向斜常压页岩气地震采集实践[J]. 物探与化探, 2023, 47(6): 1490-1499.
[3] 余长恒, 郑健, 张旭林, 周昊, 王安平, 刘磊, 李易. 川南地区页岩气井平台钻前工程物探集成技术[J]. 物探与化探, 2023, 47(1): 99-109.
[4] 罗卫锋, 胡志方, 甘伏平, 张庆玉, 康海霞, 张云枭. 南方碳酸盐岩地区页岩气钻探井位选址中的综合物探方法应用[J]. 物探与化探, 2022, 46(4): 824-829.
[5] 吴雯, 王猛, 杨迪琨, 陈默, 任林彬. 页岩气水力压裂分布式微弱电场监测技术初探[J]. 物探与化探, 2022, 46(3): 557-562.
[6] 殷启春, 王元俊, 周道容, 张丽, 孙桐. 复电阻率法在安徽南陵盆地海相页岩气勘探中的应用[J]. 物探与化探, 2022, 46(3): 668-677.
[7] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[8] 欧居刚, 王小兰, 杨晓, 邓小江, 黄诚, 李文佳. 水平井地震导向技术探索与应用——以四川盆地复杂地区页岩气井为例[J]. 物探与化探, 2021, 45(3): 551-559.
[9] 刘昊娟. 地应力地震预测及其在南川页岩气开发中的应用[J]. 物探与化探, 2021, 45(3): 560-568.
[10] 张勇, 马晓东, 李彦婧, 蔡景顺. 深度学习在南川页岩气含气量预测中的应用[J]. 物探与化探, 2021, 45(3): 569-575.
[11] 刘伟男, 张超谟, 朱林奇, 胡松, 孔政, 邓瑞. 页岩气水平井TOC测井评价新方法[J]. 物探与化探, 2021, 45(2): 423-431.
[12] 李帝铨, 汪振兴, 胡艳芳, 王涵, 苏煜堤. 广域电磁法在武陵山区页岩气勘探中的探索应用——以黔北桐梓地区为例[J]. 物探与化探, 2020, 44(5): 991-998.
[13] 田巍, 李旭兵, 王保忠. 大地电磁测深在湘东南坳陷页岩气勘探中的应用[J]. 物探与化探, 2019, 43(2): 281-289.
[14] 孟凡洋, 包书景, 陈科, 王鹏, 李柳德. 基于广域电磁法的页岩气有利区预测——以渝东北巫山地区为例[J]. 物探与化探, 2018, 42(1): 68-74.
[15] 谈迎, 杨伟松, 李振生. 陆相页岩气资源评价中人工智能算法的探索——以苏北盆地溱潼凹陷为例[J]. 物探与化探, 2018, 42(1): 96-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com