Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 810-815    DOI: 10.11720/wtyht.2023.1086
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
测井方位遮挡下的反距离加权建模方法
王振涛()
胜利油田分公司 物探研究院,山东 东营 257022
Inverse-distance weighted modeling method under logging azimuth occlusion
WANG Zhen-Tao()
Geophysical Research Institute of SINOPEC Shengli Oilfield Branch Company,Dongying 257022,China
全文: PDF(2876 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

现有测井建模方法未考虑地质沉积方向性,建模精度低,为了解决这一问题,通过对测井反距离加权建模方法优缺点分析,提出了一种测井方位遮挡下的反距离加权建模方法。该方法采用方位遮挡反距离加权插值公式,在考虑已知信息点与插值点的距离影响因素的同时,还考虑了已知信息点间的方位遮挡因素,通过综合非方位遮挡权系数来定量描述已知样本间方位遮挡影响。数值试验和实际资料对该方法和传统方法的对比结果表明,该方法建模结果空间变化更加平缓和自然,符合地质沉积变化规律。测井方位遮挡下的反距离加权建模方法,体现了地质沉积空间连续性和方位性的特点,在提高测井地质建模精度方面优势明显,具有很好的实际应用价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王振涛
关键词 测井建模方位遮挡反距离权系数非方位遮挡权系数    
Abstract

Existing log modeling methods fail to consider the directionality of geological deposition, yielding low modeling precision.To overcome this obstacle,this study proposed an inverse-distance weighted (IDW) modeling method under logging azimuth occlusion by analyzing the advantages and disadvantages of the IDW log modeling method.The new method proposed in this study adopted the IDW interpolation formula under azimuth occlusion.In addition to the influencing factors of the distance between known information points and interpolation points,the new method also considered the azimuth occlusion between known information points.Moreover,this study quantitatively described the influence of azimuth occlusion between known samples by integrating the weighting coefficients of non-azimuth occlusion.As indicated by the comparison between the new method and conventional methods based on numerical experiments and actual data,the modeling results of the new method showed gentler and more natural spatial variation,which conformed to the variation patterns of geological deposition.In sum,the method proposed in this study reflects the spatial continuity and directionality of geological deposition,has distinct advantages in improving the precision of geological log modeling,and thus can be widely applied to practical applications.

Key wordslog modeling    azimuth occlusion    inverse-distance weighting coefficient    non-azimuth occlusion weighting coefficient
收稿日期: 2022-03-21      修回日期: 2022-11-28      出版日期: 2023-06-20
ZTFLH:  P631.4  
基金资助:中国石化科技攻关项目“基于粘弹介质地震流体识别新技术研究”(P21046)
作者简介: 王振涛(1980-),男,高级工程师,2003年7月毕业于合肥工业大学资源与环境工程学院勘查技术与工程专业,主要从事地震反演和储层预测方法研究以及生产应用等工作。Email:wangzhentao998.slyt@sinopec.com
引用本文:   
王振涛. 测井方位遮挡下的反距离加权建模方法[J]. 物探与化探, 2023, 47(3): 810-815.
WANG Zhen-Tao. Inverse-distance weighted modeling method under logging azimuth occlusion. Geophysical and Geochemical Exploration, 2023, 47(3): 810-815.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1086      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/810
Fig.1  测井方位遮挡反距离插值原理示意
Fig.2  实际速度模型平面切片
Fig.3  采用60个模拟测井点速度建模切片
a—测井反距离加权建模;b—测井方位遮挡反距离加权建模
Fig.4  采用120个模拟测井点速度建模切片
a—测井反距离加权建模;b—测井方位遮挡反距离加权建模
Fig.5  SL油田测井速度建模剖面
a—测井反距离加权建模;b—测井方位遮挡反距离加权建模
Fig.6  SL油田速度建模切片
a—测井反距离加权建模;b—测井方位遮挡反距离加权建模
[1] Vail P R, Michum R M, Thompson S. Global cycles of relative changes of sea level[J]. AAPG Memoir, 1977, 26:83-97.
[2] Vail P R. Sequence stratigraphy workbook,fundamentals of sequence stratigraphy[J]. AAPG Annual Converntion Short Course:Sequence Stratigraphy Interpretation of Seismic Stratigraphy Interpretation Procedure,1988.
[3] 凌云, 郭向宇, 夏竹, 等. 基于储层构造和沉积等时格架的储层静态建模实例而研究[J]. 石油地球物理勘探, 2014, 49(1):795-806.
[3] Ling Y. Guo X Y, Xia Z, et al. A case study of reservoir static modeling based on reservoir structure and sedimentary isochronous framework[J]. Oil Geophysical Prospecting, 2014, 49(1):795-806.
[4] 孙伟, 刘远洋, 高蕾, 等. 储层速度建模分析及域转换[J]. 成都理工大学学报:自然科学版, 2017, 44(6):744-755.
[4] Sun W, Liu Y Y, Gao L, et al. Analysis of reservoir velocity modeling and domain conversion[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2017, 44(6):744-755.
[5] 黄继新, 彭仕宓, 黄健全. 储集层参数随机建模方法在扇三角洲储集层非均质性研究中的应用[J]. 石油勘探与开发, 2005, 32(6):52-55.
[5] Huang J X, Peng S M, Huang J Q. Application of stochastic simulation of reservoir parameters on heterogeneity in fan delta reservoir[J]. Petroleum Exploration & Development, 2005, 32(6):52-55.
[6] 伍宁南, 陈玉明, 刘漪. 测井约束反演技术在建南地区南部储层预测中的应用[J]. 长江大学学报:自然科学版, 2011, 8(2):44-45.
[6] Wu N N, Chen Y M, Liu Q. Application of logging constrained inversion technology in reservoir prediction in the south of Jiannan District[J]. Journal of Yangtze University:Natural and Science Edition, 2011, 8(2):44-45.
[7] 姜雄鹰, 傅志飞. 高分辨率地震反演技术及应用[J]. 成都理工大学学报:自然科学版, 2011, 38(3):271-276.
[7] Jiang X Y, Fu Z F. High-resolution seismic inversion technology and its application[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2011, 38(3):271-276.
[8] 余为维, 冯磊, 杜艳艳, 等. 测井约束与神经网络联合反演储层预测技术[J]. 地球物理学进展, 2016, 31(5):2232-2238.
[8] Yu W W, Feng L, Du Y Y, et al. Reservoir prediction technology based on joint inversion of logging-constrained and neural network[J]. Progress in Geophsics, 2016, 31(5):2232-2238.
[9] 尹力, 方伍宝, 李振春, 等. 测井模型约束全波形反演的应用[J]. 大庆石油地质与开发, 2015, 34(3):156-160.
[9] Yin L, Fang W B, Li Z C, et al. Application of the well logging model constraining the full waveform inversion[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(3):156-160.
[10] 郭良辉, 孟小红, 郭志宏, 等. 地球物理不规则分布数据的空间网格化法[J]. 物探与化探, 2005, 29(5):438-442.
[10] Guo L H, Meng X H, Guo Z H, et al. Gridding methods of geophysical irregular data in space domain[J]. Geophysical and Geochemical Exploration, 2005, 29(5):438-442.
[11] 李小东, 金胜, 王阳玲, 等. 散乱离散点数据的三角形网格化快速成图[J]. 物探与化探, 2015, 39(1):156-160.
[11] Li X D, Jin S, Wang Y L, et al. Triangular grid-based rapid mapping of scattered data[J]. Geophysical and Geochemical Exploration, 2015, 39(1):156-160.
[12] 刘兆平, 杨进, 武炜. 地球物理数据网格化方法的选取[J]. 物探与化探, 2010, 34(1):93-97.
[12] Liu Z P, Yang J, Wu W. The choice of gridding methods for geophysical data[J]. Geophysical and Geochemical Exploration, 2010, 34(1):93-97.
[13] 王长海, 陈碧宇. 基于离散光滑插值的三维地质体构造网格模型[J]. 深圳大学学报:理工版, 2014, 31(6):600-607.
[13] Wang C H, Chen B Y. 3D geological grid model based on discrete smooth interpolation[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(6):600-607.
doi: 10.3724/SP.J.1249.2014.06600
[14] 余继峰, 于泳, 付文钊, 等. 测井数据Matlab插值与地质旋会性分析应用[J]. 煤炭学报, 2011, 36(10):1679-1682.
[14] Yu J F, Yu Y, Fu W Z, et al. Application of interpolation of well logs based on Matlab to analysis of geological cyclicity[J]. Journal of China Coal Society, 2011, 36(10):1679-1682.
[15] 刘志怀. 沿层微测井插值方法反演复杂地区近地表模型[J]. 郑州大学报:工学版, 2013, 34(1):121-124.
[15] Liu Z H. Near-surface model inversion in complex terrain area by along-horizon interpolation method[J]. Journal of Zhengzhou University:Engineering Science, 2013, 34(1):121-124.
[16] 张学宏, 李颜, 郝培章, 等. 水文资料插值计算方法探讨[J]. 海洋预报, 2008, 25(1):5-13.
[16] Zhang X H, Li Y, Hao P Z, et al. Discussion on the interpolation calculation methods of hydrological data[J]. Marin Forecasts, 2008, 25(1):5-13.
[17] 胡刚, 赵刚, 宋慧. 不同插值方法对降水量空间不确定性的影响[J]. 济南大学学报:自然科学版, 2012, 26(4):428-432.
[17] Hu G, Zhao G, Song H. Influence of different interpllation methods on spatial univertainty of rainfall[J]. Journal of University of Jinan:Sci.and Tech., 2012, 26(4):428-432.
[18] Tobler W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46(s1):234-240.
doi: 10.2307/143141
[19] 刘国峰, 孟小红, 岳延波, 等. 克里金法在GPS数据内插中的应用[J]. 物探与化探, 2006, 30(2):175-178.
[19] Liu G F, Meng X H, Yue Y B, et al. The application of keiging to GPS data interpolation[J]. Geophysical and Geochemical Exploration, 2006, 30(2):175-178.
[20] 段平, 盛业华, 李佳, 等. 自适应的IDW插值方法及其在气温场中的应用[J]. 地理研究, 2014, 33(8):1417-1426.
doi: 10.11821/dlyj201408003
[20] Duan P, Sheng Y H, Li J, et al. Adaptive IDW interpolation method and its application in the temperature field[J]. Geographical Research, 2014, 33(8):1417-1426.
doi: 10.11821/dlyj201408003
[1] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[2] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[3] 周慧, 孙成禹, 刘英昌, 蔡瑞乾. 基于DC-UNet卷积神经网络的强噪声压制方法[J]. 物探与化探, 2023, 47(5): 1288-1297.
[4] 李栋, 朱博华. 基于上覆地层频率约束的匹配追踪强反射层分离方法[J]. 物探与化探, 2023, 47(5): 1261-1272.
[5] 项诸宝, 张大洲, 朱德兵, 李明智, 熊章强. 不同骨料混凝土模型中瑞利波传播特性研究[J]. 物探与化探, 2023, 47(5): 1226-1235.
[6] 张利振, 孙成禹, 王志农, 李世中, 焦峻峰, 颜廷容. 面波信息约束的初至波走时层析反演方法[J]. 物探与化探, 2023, 47(5): 1198-1205.
[7] 黄彦庆. 川东北元坝地区致密砂岩多产状裂缝刻画[J]. 物探与化探, 2023, 47(5): 1189-1197.
[8] 张邦. 超声平面阵全聚焦三维成像方法[J]. 物探与化探, 2023, 47(5): 1273-1280.
[9] 李秋辰, 陈冬, 许文豪, 易善鑫, 谢兴隆, 关俊朋, 崔芳姿. 基于微地震连续裂缝网络模型的SRV研究[J]. 物探与化探, 2023, 47(4): 1048-1055.
[10] 陈中伟, 郭良辉, 陈元恪, 唐晗晗. 壳幔三维速度参考模型构建方法研究——以华南陆块中部为例[J]. 物探与化探, 2023, 47(4): 936-943.
[11] 刘庆, 张镇, 杨帅, 李枫凌. 基于灰色关联与层次分析的脆性指数预测方法——以准噶尔盆地吉木萨尔凹陷芦草沟组致密储层为例[J]. 物探与化探, 2023, 47(4): 944-953.
[12] 陈超群, 戴海涛, 高秦, 陈俊杰, 雒文丽, 王智茹. 复杂地表条件下地震资料一致性处理方法研究与应用[J]. 物探与化探, 2023, 47(4): 954-964.
[13] 张金强. 基于正则化理论的时频分析方法及应用[J]. 物探与化探, 2023, 47(4): 965-974.
[14] 陈子龙, 王海燕, 郭华, 王光文, 赵玉莲. 地震全波形反演研究进展与应用现状综述[J]. 物探与化探, 2023, 47(3): 628-637.
[15] 宋晨, 金吉能, 潘仁芳, 朱博远, 喻志骅, 唐小玲. 分频AVO技术在安岳气田须二段储层含气性分析中的应用[J]. 物探与化探, 2023, 47(3): 681-689.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com