Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (6): 1410-1416    DOI: 10.11720/wtyht.2023.1558
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
地球磁异常EMAG2v3与全球重力数据库V29数据质量综合评估——以北极地区Aegir脊为例
张冕1,2(), 张春灌1,2(), 赵敏1,2, 钟振华2, 袁炳强1,2, 周磊1,2, 韩梅1,2
1.西安石油大学 地球科学与工程学院,陕西 西安 710065
2.西安石油大学 陕西省油气成藏地质学重点实验室,陕西 西安 710065
An integrated data quality evaluation of Earth magnetic anomaly grid EMAG2v3 and global gravimetric database V29: A case study of the Aegir ridge in the Arctic
ZHANG Mian1,2(), ZHANG Chun-Guan1,2(), ZHAO Min1,2, ZHONG Zhen-Hua2, YUAN Bing-Qiang1,2, ZHOU Lei1,2, HAN Mei1,2
1. School of Earth Sciences and Engineering, Xi'an Shiyou University, Xi'an 710065, China
2. Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi'an Shiyou University, Xi'an 710065, China
全文: PDF(3654 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了评估地球磁异常(EMAG2v3)内海域磁力资料与全球重力数据库V29中海域重力资料质量的高低,选择Aegir轴裂谷及邻区约150 km磁力与重力数据分别进行对比研究。系统收集了EMAG2v3、全球重力数据库V29中研究区范围内的异常数据,用其与在该地实测的重力与磁力数据进行对比分析。首先对EMAG2v3库数据、V29库数据、实测重、磁异常数据进行网格化与白化处理,得到对应的影像图,利用相关分析法对EMAG2v3与船测磁力测量数据、重力数据库V29与船测重力数据进行相关分析,得到磁力相关分析图与重力相关分析图及其对应的相关系数。通过对两种磁力数据与两种重力数据之间相关系数及差值特征的对比分析,对EMAG2v3库数据与全球重力数据库V29数据库中Aegir轴裂谷及两侧约150 km范围内的重、磁数据进行综合评估。根据研究结果表明,EMAG2v3库融合了大量船测磁力资料,在测线密集的地方,船测磁力异常数据比EMAG2v3库数据质量更高;船测重力异常和V29库重力异常变化特征基本一致,表明两种异常数据的横向分辨率相同。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张冕
张春灌
赵敏
钟振华
袁炳强
周磊
韩梅
关键词 数据质量评估重力数据库V29地球磁异常EMAG2v3船测磁力船测重力    
Abstract

To evaluate the qualities of the marine magnetic data in the Earth magnetic anomaly grid EMAG2v3 and the marine gravity data in global gravimetric database V29, this study selected the magnetic and gravity data of the Aegir axial rift and its adjacent areas within a range of about 150 km from EMAG2v3 and V29, respectively to conduct comparative research. This study systematically collected the anomaly data of the study area from EMAG2v3 and V29 for comparison with the measured gravity and magnetic data of the study area. First, this study gridded and whitened the EMAG2v3 data, V29 data, and measured gravity and magnetic anomaly data to obtain the corresponding images. Then, this study analyzed the correlations between the EMAG2v3 data and the shipborne magnetic data and between the V29 data and the shipborne gravity data, obtaining the magnetic and gravity correlation diagrams and corresponding correlation coefficients. By comparing the correlation coefficients and differences between the two kinds of magnetic data and the two kinds of gravity data, this study conducted an integrated evaluation of magnetic the gravity data of the study area from EMAG2v3 and V29, respectively. As indicated by the results, EMAG2v3 incorporates many shipborne magnetic data, with the shipborne magnetic anomaly data showing higher quality than the data from the EMAG2v3 for areas with dense survey lines. The results also show that the shipborne gravity anomalies showed roughly the same variations as those from V29, indicating the same lateral resolution of the two types of anomaly data.

Key wordsdata quality evaluation    gravimetric database V29    Earth's magnetic anomaly grid EMAG2v3    shipborne magnetic force    shipborne gravity
收稿日期: 2022-11-22      修回日期: 2023-05-14      出版日期: 2023-12-20
:  P631  
基金资助:国家自然科学基金面上项目(42172224);陕西省自然科学基础研究计划项目(2021JM-401)
通讯作者: 张春灌(1981-),男,博士,教授,主要从事综合地球物理勘探及构造地球物理研究工作。Email:zhangchunguan@xsyu.edu.cn
作者简介: 张冕(1996-),男,在读硕士,主要从事地球物理综合解释工作。Email:1033167186@qq.com
引用本文:   
张冕, 张春灌, 赵敏, 钟振华, 袁炳强, 周磊, 韩梅. 地球磁异常EMAG2v3与全球重力数据库V29数据质量综合评估——以北极地区Aegir脊为例[J]. 物探与化探, 2023, 47(6): 1410-1416.
ZHANG Mian, ZHANG Chun-Guan, ZHAO Min, ZHONG Zhen-Hua, YUAN Bing-Qiang, ZHOU Lei, HAN Mei. An integrated data quality evaluation of Earth magnetic anomaly grid EMAG2v3 and global gravimetric database V29: A case study of the Aegir ridge in the Arctic. Geophysical and Geochemical Exploration, 2023, 47(6): 1410-1416.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1558      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I6/1410
Fig.1  Aegir轴裂谷海底地形及重力测线(a)和磁力测线(b)分布
Fig.2  Aegir轴裂谷磁力异常及数据对比
a—船测磁力异常;b—EMAG2v3地球磁异常;c—船测磁力异常与EMAG2v3的相关系数;d—船测磁力异常与EMAG2v3的差值;e—测线A磁异常及差值;f—测线B磁异常及差值
相关系数 占总面积
比例/%
磁异常差值
绝对值/nT
占总面
积比例/%
-1.0~0.3 9.94 <10 16.07
0.3~0.5 4.83 10~50 48.31
0.5~0.8 16.32 50~100 24.27
>0.8 68.89 >100 11.34
Table 1  磁力相关系数数值与差值区间
Fig.3  Aegir轴裂谷重力异常及数据对比
a—船测重力异常;b—地球重力异常(V29);c—船测重力异常与地球重力异常(V29)的相关系数;d—船测磁力异常与地球重力异常(V29)的差值;e—测线A重力异常及差值;f—测线B重力异常及差值
相关系数 占总面积
比例/%
磁异常差
值绝对值/nT
占总面
积比例/%
-1.0~0.3 6.03 <10 10.65
0.3~0.5 4.10 10~50 89.35
0.5~0.8 16.40 50~100 0
>0.8 73.46 >100 0
Table 2  重力相关系数数值与差值区间
[1] 张保军, 王泽民. 联合卫星重力、卫星测高和海洋资料研究全球海平面变化[J]. 武汉大学学报:信息科学版, 2015, 40(11):1453-1459.
[1] Zhang B J, Wang Z M. Combined satellite gravity,satellite altimetry and oceanographic data to study global sea level change[J]. Journal of Wuhan University:Information Science Edition, 2015, 40(11):1453-1459.
[2] Hinze W J, Aiken C, Brozena J, et al. New standards for reducing gravity data:The north American gravity database[J]. Geophysics, 2005, 70(4):J25-J32.
[3] Olesen O B, Petersen N C. Stochastic data envelopment analysis—A review[J]. European Journal of Operational Research, 2016, 251(1):2-21
doi: 10.1016/j.ejor.2015.07.058
[4] Parnell-Turner R, White N, Henstock T, et al. A continuous 55-million-year record of transient mantle plume activity beneath iceland[J]. Nature Geoscience, 2014, 7(12):914-919.
doi: 10.1038/ngeo2281
[5] Hemant K, Maus S. Geological modeling of the new CHAMP magnetic anomaly maps using a geographical information system technique[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B12):103.
[6] Maus S, Barckhausen U, Berkenbosch H, et al. EMAG2:A2-arc min resolution Earth magnetic anomaly grid compiled from satellite,airborne,and marine magnetic measurements[J]. Geochemistry Geophysics Geosystems, 2009, 10(8):Q08005.
[7] Meyer B, Chulliat A, Saltus R. Derivation and error analysis of the earth magnetic anomaly grid at 2 arc min resolution version 3 (EMAG2v3)[J]. Geochemistry Geophysics Geosystems, 2017, 18(12):4522-4537.
doi: 10.1002/ggge.v18.12
[8] Vervelidou F, Thébault E, Korte M. A high-resolution lithospheric magnetic field model over southern Africa based on a joint inversion of CHAMP,Swarm,WDMAM,and ground magnetic field data[J]. Solid Earth, 2018, 9(4):897-910.
doi: 10.5194/se-9-897-2018
[9] Li C F, Lu Y, Wang J. A global reference model of Curie-point depths based on EMAG2[J]. Scientific Reports, 2017, 7(1):45129.
doi: 10.1038/srep45129
[10] Baykiev E, Guerri M, Fullea J. Integrating gravity and surface elevation with magnetic data:Mapping the curie temperature beneath the British Isles and surrounding areas[J]. Frontiers in Earth Science, 2018, 6:165.
doi: 10.3389/feart.2018.00165
[11] Acosta J D S, Hints R, Soesoo A. Insights on the tectonic styles across Estonia using satellite potential fields derived from WGM-2012 gravity data and EMAG2 magnetic data[R]. Copernicus Meetings, 2022.
[12] Kumar S, Pal S K, Guha A, et al. New insights on Kimberlite emplacement around the Bundelkhand Craton using integrated satellite-based remote sensing,gravity and magnetic data[J]. Geocarto International, 2022, 37(4):999-1021.
doi: 10.1080/10106049.2020.1756459
[13] Dickson W, Schiefelbein C F, Odegard M E, et al. Petroleum systems asymmetry across the South Atlantic equatorial margins[J]. Geological Society London,Special Publications, 2016, 431(1):219-233.
doi: 10.1144/SP431.13
[14] Maystrenko Y, Scheck-Wenderoth M. Density contrasts in the upper mantle and lower crust across the continent—Ocean transition:Constraints from 3D gravity modelling at the Norwegian margin[J]. Geophysical Journal International, 2009, 179(1):536-548.
doi: 10.1111/gji.2009.179.issue-1
[15] Blondes M S, Gans K D, Thordsen J J, et al. US Geological Survey National produced waters geochemical database v2.3 (PROVISIONAL)[R]. United States Geological Survey, 2016.
[16] Christensen A N, Andersen O B. Comparison of satellite altimetric gravity and ship-borne gravity—Offshore western Australia[J]. ASEG Extended Abstracts, 2016, 2016(1):1-5.
[17] 刘善伟, 李家军, 万剑华, 等. 利用多代卫星测高数据计算中国近海及邻域重力异常[J]. 海洋科学, 2015, 39(12):130-134.
[17] Liu S W, Li J J, Wan J H, et al. Calculation of gravity anomalies over China Sea and its vicinity based on multi-generation satellite altimetry data[J]. Marine Sciences, 2015, 39(12) :130-134.
[18] 管一鹤, 盛辉, 刘善伟, 等. 联合多代卫星测高资料反演中国南海重力异常[J]. 海洋测绘, 2016, 36 (1):11-14.
[18] Guan Y H, Sheng H, Liu S W, et al. Inversion of the gravity anomalies by using multi-generation satellite altimeter data in the South China Sea[J]. Hydrographic Surveying and Charting, 2016, 36(1):11-14.
[19] 李随民, 姚书振, 韩玉丑. Surfer软件中利用趋势面方法圈定化探异常[J]. 地质与勘探, 2007, 43(2):72-75.
[19] Li S M, Yao S Z, Han Y C. Delineation of geochemical anomalies by trend surface method in Surfer software[J]. Geology and Prospecting, 2007, 43(2):72-75.
[20] 陆志波, 陆雍森. Surfer8.0在环境评价和规划中的应用[J]. 同济大学学报:自然科学版, 2005, 33(2):191-195.
[20] Lu Z B, Lu Y S. Application of Surfer8.0 to environmental assessment and planning[J]. Journal of Tongji University:Natural Science Edition, 2005, 33(2):191-195.
[21] 林伙海, 吴陈锋. 基于surfer8.0实现雨量图形可视化[J]. 气象, 2006, 32(7):115-118.
[21] Lin H H, Wu C F. Realization of rainfall graphical visualization based on surfer8.0[J]. Meteorological, 2006, 32(7):115-118.
[22] 吴卫国. Surfer网格化与白化处理在数据扩边中的应用——以1∶5万水系沉积物测量成图为例[J]. 物探与化探, 2015, 39(3):602-605.
[22] Wu W G. The application of Surfer gridding and whitening in data edge expansion—Taking the measurement and mapping of 1∶50,000 river system sediments as an example[J]. Geophysical and Geochemical Exploration, 2015, 39(3):602-605.
[23] Koptev A, Cloetingh S, Burov E, et al. Long-distance impact of Iceland plume on Norway’s rifted margin[J]. Scientific Reports, 2017, 7(1):10408.
doi: 10.1038/s41598-017-07523-y
[24] 张春灌, 李想, 袁炳强, 等. 地球磁异常(EMAG2)数据中海域资料质量评估——以北极地区Kolbeinsey脊南段为例[J]. 地球科学进展, 2019, 34(3):288-294.
doi: 10.11867/j.issn.1001-8166.2019.03.0288
[24] Zhang C G, Li X, Yuan B Q, et al. Quality evaluation of offshore data in the earth magnetic anomaly grid (2-arc-minute resolution):Taking the southern section of the kolbeinsey ridge in the Arctic region as an example[J]. Advances in Earth Science, 2019, 34(3):288-294.
[25] 管志宁. 地磁场与磁力勘探[M]. 北京: 地质出版社, 2005.
[25] Guan Z N. Geomagnetic field and magnetic exploration[M]. Beijing: Geological Publishing House, 2005.
[26] 胡毅, 王立明, 钟贵才, 等. 威德尔海的重磁场特征及其构造意义[J]. 地球科学进展, 2015, 30(11):1231-1238.
[26] Hu Y, Wang L M, Zhong G C, et al. Gravity and magnetic field characteristics of the Weddell Sea and its tectonic significance[J]. Advances in Earth Sciences, 2015, 30(11):1231-1238.
[27] 张明华, 张家强. 现代卫星测高重力异常分辨能力分析及在海洋资源调查中应用[J]. 物探与化探, 2005, 29(4):295-298,303.
[27] Zhang M H, Zhang J Q. Resolution of modern satellite altimetric gravity anomaly and its application to marine geological survey[J]. Geophysical and Geochemical Exploration, 2005, 29(4):295-298,303.
[28] 张春灌, 袁炳强, 张国利. 最新全球重力数据库V23中陆域重力资料质量评估[J]. 地球科学进展, 2017, 32(1):75-82.
doi: 10.11867/j.issn.1001-8166.2017.01.0075
[28] Zhang C G, Yuan B Q, Zhang G L. Quality evaluation of land gravity data in the latest global gravity database V23[J]. Advances in Earth Science, 2017, 32(1):75-82.
doi: 10.11867/j.issn.1001-8166.2017.01.0075
[1] 程正璞, 连晟, 魏强, 胡文广, 雷鸣, 李戍. 雄安新区深部雾迷山组热储层时频电磁法探测研究[J]. 物探与化探, 2023, 47(6): 1400-1409.
[2] 兰君, 李兆令, 张鹏, 李志民, 李得建, 邢楠, 孙莉, 杨云涛, 徐洪岩, 王健, 王巧云. 重磁放综合物探方法在鲁西微山稀土矿勘查中的应用[J]. 物探与化探, 2023, 47(6): 1417-1424.
[3] 史全党, 孔令业, 吴超, 丁艳雪, 刘泽民, 于雪, 王江. 基于小波边缘分析与井—震联合建模的波阻抗反演技术在陆梁隆起带储层预测中的应用[J]. 物探与化探, 2023, 47(6): 1425-1432.
[4] 郑孝诚, 张明华, 任伟. 卷积神经网络在山东金矿勘查预测中的应用[J]. 物探与化探, 2023, 47(6): 1433-1440.
[5] 杨明远, 张汉雄, 马超, 杨海磊, 朱威. AMT在新疆三屯河地区地下赋水性研究中的应用[J]. 物探与化探, 2023, 47(6): 1441-1449.
[6] 田培先, 陈伟坚, 林启辉, 周伟斌. 海上航道地球物理勘查技术的应用[J]. 物探与化探, 2023, 47(6): 1450-1455.
[7] 张敏, 邓盾, 李三福, 史文英, 张兴岩, 支玲. 东方1-1构造底辟模糊区OBN资料关键处理技术及应用[J]. 物探与化探, 2023, 47(6): 1456-1466.
[8] 付宇, 艾寒冰, 姚振岸, 梅竹虚, 苏可嘉. 基于正余弦算法的瑞利波频散曲线反演[J]. 物探与化探, 2023, 47(6): 1467-1478.
[9] 薛野, 杨帆, 赵苏城, 蓝加达. 彭水地区残留向斜常压页岩气地震采集实践[J]. 物探与化探, 2023, 47(6): 1490-1499.
[10] 邱峰. 重力位三阶梯度张量异常的波数域转换计算及其DEXP定量解释方法[J]. 物探与化探, 2023, 47(6): 1500-1507.
[11] 李思平, 刘彩云, 熊杰, 田慧潇, 王方. 基于改进残差网络的大地电磁反演研究[J]. 物探与化探, 2023, 47(6): 1508-1518.
[12] 刘湘浩, 刘四新, 胡铭奇, 孙中秋, 王千. 基于OMAGA-BP算法的高密度电阻率法反演研究[J]. 物探与化探, 2023, 47(6): 1519-1527.
[13] 张泽奇, 高级, 刘梁, 查华胜, 张海江. 基于三角和线性台阵的煤矿背景噪声成像技术适用性研究[J]. 物探与化探, 2023, 47(6): 1528-1537.
[14] 王康, 刘彩云, 熊杰, 王永昌, 胡焕发, 康佳帅. 基于全卷积残差收缩网络的地震波阻抗反演[J]. 物探与化探, 2023, 47(6): 1538-1546.
[15] 张雪昂, 杨志超, 李小燕, 董丽媛. 多孔隙度变化倾角裂缝型砂岩铀矿超热中子运移模拟[J]. 物探与化探, 2023, 47(6): 1547-1554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com