Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (6): 1490-1499    DOI: 10.11720/wtyht.2023.0057
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
彭水地区残留向斜常压页岩气地震采集实践
薛野, 杨帆, 赵苏城, 蓝加达
中国石化华东油气分公司 勘探开发研究院,江苏 南京 210007
Seismic data acquisition of normally pressured shale gas reservoirs in residual synclines in the Pengshui area,Sichuan Basin,China
XUE Ye, YANG Fan, ZHAO Su-Cheng, LAN Jia-Da
Research Institute of Exploration & Development,East Company,SINOPEC,Nanjing 210007,China
全文: PDF(6570 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

中国南方常压页岩气主要分布于四川盆地外围的志留系残留向斜,资源潜力大。区内地质条件复杂,必须利用高信噪比地震资料精细刻画地下的构造特征并准确描述优质页岩的分布规律,提高水平井优质页岩钻遇率与钻井效率。自2011年起,在彭水地区持续开展了地震采集探索与实践。通过系统梳理总结已实施项目的方法、效果及不足,区域噪声特征分析,道距对静校正影响研究,三维地震观测系统退化分析,认为:①二维地震采集剖面五峰—龙马溪组页岩反射波组较清晰,支撑了常压页岩气的选区评价工作;②提出宽方位、低炮点密度、高横向覆盖次数以及中近偏移距信息丰富的三维观测系统设计原则;③三维地震处理剖面信噪比高、波组特征清楚,经实钻验证三维构造成像准确、地层深度预测误差<1%,有力支撑勘探开发。该技术体系可在类似常压页岩气探区推广。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛野
杨帆
赵苏城
蓝加达
关键词 残留向斜常压页岩气地震采集观测系统信噪比    
Abstract

Normally pressured shale gas reservoirs in southern China,exhibiting significant potential resources,are primarily distributed in Silurian residual synclines at the periphery of the Sichuan Basin.Given intricate geological conditions in the study area,seismic data with high signal-to-noise ratios(SNRs) are required for fine-scale characterization of underground structural features and accurate description of the distribution patterns of high-quality shales.The purpose is to improve the probability of penetration of high-quality shales in horizontal wells and the drilling efficiency.Since 2011,the research and application of seismic data acquisition have been continually conducted in the Pengshui area.This study systematically summarized the methods,effects,and deficiencies of relevant projects implemented,and analyzed regional noise characteristics,the influence of channel spacing on static correction,and the degradation of the 3D seismic observation system.The results are shown as follows:(1)The 2D seismic data acquisition profiles displayed relatively clear reflection wave groups of shales in the Wufeng-Longmaxi formations,supporting the target selection and evaluation of normally pressured shale gas reservoirs;(2)The design principles of a 3D observation system,characterized by a wide azimuth,a low shot density,a high lateral fold number,and rich medium-near offset information, were proposed in this study;(3)The 3D seismic data processing profiles manifested high SNRs and clear wave group characteristics.The drilling results reveal accurate 3D structure imaging and a formation depth prediction error below 1%,strongly supporting shale gas exploration and production.The technical system in this study can be applied to similar exploration areas of normally pressured shale gas reservoirs.

Key wordsresidual syncline    normally pressured shale gas reservoirs    seismic data acquisition    observation system    signal-to-noise ratio
收稿日期: 2023-02-16      修回日期: 2023-10-08      出版日期: 2023-12-20
:  P631.4  
基金资助:国家科技重大专项“彭水地区常压页岩气勘探开发示范工程”(2016ZX05061);中国石化科技开发部项目“常压页岩气地球物理评价技术研究”(P21087-3)
作者简介: 薛野(1990-),男,副研究员,主要从事石油物探技术研究和物探科技管理工作。
引用本文:   
薛野, 杨帆, 赵苏城, 蓝加达. 彭水地区残留向斜常压页岩气地震采集实践[J]. 物探与化探, 2023, 47(6): 1490-1499.
XUE Ye, YANG Fan, ZHAO Su-Cheng, LAN Jia-Da. Seismic data acquisition of normally pressured shale gas reservoirs in residual synclines in the Pengshui area,Sichuan Basin,China. Geophysical and Geochemical Exploration, 2023, 47(6): 1490-1499.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.0057      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I6/1490
Fig.1  彭水常压页岩气探区构造位置
Fig.2  不同道距记录的FK谱
Fig.3  不同道距资料求取近地表速度模型
Fig.4  武隆三维(a)与二维(b)同位置剖面对比
Fig.5  武隆三维过页岩气水平井地震剖面
Fig.6  武隆三维不同偏移距信息叠加剖面对比
Fig.7  武隆三维不同方位角信息叠加剖面对比
Fig.8  武隆三维信噪比与覆盖次数关系
项目 二维 武隆三维 武隆东三维
侏罗系砂岩地表区 碳酸盐岩地表区
观测系统 1L1S600T 20L7S216T 20L3S224T 20L3S216T
面元/线元 10 m 20 m×20 m 20 m×20 m 20 m×20 m
覆盖次数 100 12(纵)×5(横)=60次 7(纵)×10(横)=70次 9(纵)×10(横)=90次
道间距 20 m 40 m 40 m 40 m
检波线距 280 m 240 m 240 m
炮点距 60 m 80 m 80 m 80 m
炮线距 360 m 320 m 240 m
接收道数 600道 216×20=4320道 224×20=4480道 216×20=4320道
最大非纵距 2900 m 2380 m 2380 m
横纵比 0.67 0.53 0.55
束线间滚动距离 560 m 240 m 240 m
3000 m内覆盖次数 50 33~37 41~43 55~57
炮点密度 34.72个/km2 39.06个/km2 52.08个/km2
炮道密度 15万道/km2 17.5万道/km2 22.5万道/km2
Table 1  彭水地区页岩气地震观测系统参数
Fig.9  武隆三维(a)与武隆东三维(b)物理点布设模式对比
Fig.10  相同地表、构造条件下武隆东三维(a)与武隆三维(b)叠加对比
Fig.11  武隆东三维过页岩气水平井地震剖面
[1] 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1):13-35.
[1] Nie H K, He Z L, Liu G X, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49(1):13-35.
[2] 马新华. 四川盆地南部页岩气富集规律与规模有效开发探索[J]. 天然气工业, 2018, 38(10):1-10.
[2] Ma X H. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10):1-10.
[3] 何希鹏. 四川盆地东部页岩气甜点评价体系与富集高产影响因素[J]. 天然气工业, 2021, 41(1):59-71.
[3] He X P. Sweet spot evaluation system and enrichment and high yield influential factors of shale gas in Nanchuan area of eastern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1):59-71.
[4] 郭彤楼, 蒋恕, 张培先, 等. 四川盆地外围常压页岩气勘探开发进展与攻关方向[J]. 石油实验地质, 2020, 42(5):837-845.
[4] Guo T L, Jiang S, Zhang P X, et al. Progress and direction of exploration and development of normally-pressured shale gas from the periphery of Sichuan Basin[J]. Petroleum Geology and Experiment, 2020, 42(5):837-845.
[5] 郭彤楼. 页岩气勘探开发中的几个地质问题[J]. 油气藏评价与开发, 2019, 9(5):14-19.
[5] Guo T L. A few geological issues in shale gas exploration and development[J]. Reservoir Evaluation and Development, 2019, 9(5):14-19.
[6] 何贵松, 何希鹏, 高玉巧, 等. 渝东南盆缘转换带金佛斜坡常压页岩气富集模式[J]. 天然气工业, 2020, 40(6):50-60.
[6] He G S, He X P, Gao Y Q, et al. Enrichment model of normal-pressure shale gas in the Jinfo slope of the basin-margin transition zone in Southeast Chongqing[J]. Natural Gas Industry, 2020, 40(6):50-60.
[7] 何希鹏, 何贵松, 高玉巧, 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018, 38(12):1-14.
[7] He X P, He G S, Gao Y Q, et al. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018, 38(12):1-14.
[8] 方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发, 2019, 9(5):1-13.
[8] Fang Z X. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China[J]. Reservoir Evaluation and Development, 2019, 9(5):1-13.
[9] 方志雄, 何希鹏. 渝东南武隆向斜常压页岩气形成与演化[J]. 石油与天然气地质, 2016, 37(6):819-827.
[9] Fang Z X, He X P. Formation and evolution of normal pressure shale gas reservoir in Wulong Syncline,Southeast Chongqing,China[J]. Oil & Gas Geology, 2016, 37(6):819-827.
[10] 曲寿利. 物探新技术是降低油气勘探开发成本的重要利器[J]. 石油物探, 2019, 58(6):783-790.
[10] Qu S L. New geophysical exploration technology:An important tool to reduce the cost of oil and gas exploration and development[J]. Geophysical Prospecting for Petroleum, 2019, 58(6):783-790.
[11] 杨勤勇, 郭恺, 李博, 等. TTI各向异性地震成像技术及其在页岩气勘探中的应用[J]. 石油物探, 2019, 58(6):882-889,897.
doi: 10.3969/j.issn.1000-1441.2019.06.011
[11] Yang Q Y, Guo K, Li B, et al. Application of TTI anisotropic seismic imaging in shale gas exploration[J]. Geophysical Prospecting for Petroleum, 2019, 58(6):882-889,897.
doi: 10.3969/j.issn.1000-1441.2019.06.011
[12] 陈祖庆, 杨鸿飞, 王静波, 等. 页岩气高精度三维地震勘探技术的应用与探讨——以四川盆地焦石坝大型页岩气田勘探实践为例[J]. 天然气工业, 2016, 36(2):9-20.
[12] Chen Z Q, Yang H F, Wang J B, et al. Application of 3D high-precision seismic technology to shale gas exploration:A case study of the large Jiaoshiba shale gas field in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(2):9-20.
[13] 薛野, 任俊兴, 杨帆, 等. 南川复杂构造带常压页岩气变密度三维地震采集技术的实践与认识[J]. 科学技术与工程, 2021, 21(29):12461-12469.
[13] Xue Y, Ren J X, Yang F, et al. The practice and understanding of variable-density 3D seismic exploration technology of normal pressure shale gas in Nanchuan Complex Structural Belt[J]. Science Technology and Engineering, 2021, 21(29):12461-12469.
[14] 周晓冀, 杨智超, 杜文军, 等. 四川盆地泸州区块页岩气三维地震覆盖密度优选[J]. 天然气勘探与开发, 2021, 44(2):93-99.
[14] Zhou X J, Yang Z C, Du W J, et al. Optimizing 3D seismic coverage density in Luzhou shale-gas block,Sichuan Basin[J]. Natural Gas Exploration and Development, 2021, 44(2):93-99.
[15] 薛野, 杨帆, 刘厚裕, 等. 彭水地区碳酸盐岩山地地表地震激发接收因素优选及效果[J]. 物探与化探, 2022, 46(3):608-617.
[15] Xue Y, Yang F, Liu H Y, et al. Determination of the optimal factors of seismic excitation and reception on the ground surface of carbonate mountainous areas in Pengshui area and its seismic acquisition effects[J]. Geophysical and Geochemical Exploration, 2022, 46(3):608-617.
[16] 薛野, 刘田田. 贵州织金浅煤层地震勘探技术的实践与认识[J]. 煤田地质与勘探, 2018, 46(4):161-167.
[16] Xue Y, Liu T T. The practice and understanding of seismic exploration technology of shallow coal seams in Zhijin area,Guizhou Province[J]. Coal Geology & Exploration, 2018, 46(4):161-167.
[17] 吕公河. 宽线地震勘探观测系统参数对信噪比的影响作用分析探讨[J]. 石油物探, 2013, 52(5):495-501,442.
doi: 10.3969/j.issn.10001441.2013.05.008
[17] Lyu G H. Discussion on the influence of geometry parameters of wideline seismic survey on S/N[J]. Geophysical Prospecting for Petroleum, 2013, 52(5):495-501,442.
doi: 10.3969/j.issn.10001441.2013.05.008
[18] 刘宜文, 罗勇, 尹丽丽, 等. 准南复杂山地探区基准面静校正方法与质控策略[J]. 物探与化探, 2018, 42(6):1209-1214.
[18] Liu Y W, Luo Y, Yin L L, et al. Strategy of static correction in complicated mountainous area on the south margin of Junggar Basin[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1209-1214.
[19] 敬朋贵, 殷厚成, 陈祖庆. 南方复杂山地三维地震勘探实践与效果分析[J]. 石油物探, 2010, 49(5):495-499,19.
[19] Jing P G, Yin H C, Chen Z Q. 3D seismic exploration practice and effect analysis in complicated mountainous area in Southern China[J]. Geophysical Prospecting for Petroleum, 2010, 49(5):495-499,19.
[20] 冯凯, 和冠慧, 尹成, 等. 宽方位三维观测系统的发展现状与趋势[J]. 西南石油学院学报, 2006, 28(6):24-28,113.
[20] Feng K, He G H, Yin C, et al. Present situation and prospect of wide-azimuth 3D inspection system[J]. Journal of Southwest Petroleum University, 2006, 28(6):24-28,113.
[21] 刘依谋, 印兴耀, 张三元, 等. 宽方位地震勘探技术新进展[J]. 石油地球物理勘探, 2014, 49(3):596-610,420.
[21] Liu Y M, Yin X Y, Zhang S Y, et al. Recent advances in wide-azimuth seismic exploration[J]. Oil Geophysical Prospecting, 2014, 49(3):596-610,420.
[22] 刘传虎. 宽方位地震技术与隐蔽油气藏勘探[J]. 石油物探, 2012, 51(2):138-145,104.
doi: 10.3969/j.issn.1000-1441.2012.02.005
[22] Liu C H. Wide azimuth seismic technique and subtle hydrocarbon reservoir exploration[J]. Geophysical Prospecting for Petroleum, 2012, 51(2):138-145,104.
doi: 10.3969/j.issn.1000-1441.2012.02.005
[23] 屠世杰. 高精度三维地震勘探中的炮密度、道密度选择——YA高精度三维勘探实例[J]. 石油地球物理勘探, 2010, 45(6):926-936,792.
[23] Tu S J. Selection of shot density and trace density in high precision 3D seismic exploration:A high precision 3D exploration case in YA area[J]. Oil Geophysical Prospecting, 2010, 45(6):926-936,792.
[24] 陈吴金, 于静, 张怀邦, 等. 高密度地震采集弱反射信号的变化规律[J]. 物探与化探, 2014, 38(4):701-710,741.
[24] Chen W J, Yu J, Zhang H B, et al. Variation regularity of weak reflected signal in high density seismic acquisition[J]. Geophysical and Geochemical Exploration, 2014, 38(4):701-710,741.
[25] 齐中山, 王静波, 张文军, 等. 米仓—大巴山山前带地震勘探进展及下一步攻关方向探讨[J]. 石油物探, 2018, 57(3):458-469.
doi: 10.3969/j.issn.1000-1441.2018.03.016
[25] Qi Z S, Wang J B, Zhang W J, et al. Progress and research direction of seismic exploration in the Micang-Dabashan piedmont zone,China[J]. Geophysical Prospecting for Petroleum, 2018, 57(3):458-469.
doi: 10.3969/j.issn.1000-1441.2018.03.016
[1] 王通, 刘建勋, 王兴宇, 李广才, 田密. Shearlet域尺度角度自适应深反射地震数据随机噪声压制方法[J]. 物探与化探, 2022, 46(3): 704-713.
[2] 薛野, 杨帆, 刘厚裕, 刘明, 赵苏城, 蓝加达. 彭水地区碳酸盐岩山地地表地震激发接收因素优选及效果[J]. 物探与化探, 2022, 46(3): 608-617.
[3] 段莹, 张高成, 谭雅丽. 泌阳凹陷高陡构造带地震成像[J]. 物探与化探, 2021, 45(4): 981-989.
[4] 邱庆良, 曹乃文, 白烨. 可控震源激发参数优选及应用效果[J]. 物探与化探, 2021, 45(3): 686-691.
[5] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[6] 周锦钟, 张金海, 牛全兵, 张惠瑜, 王海峰, 朱波, 李丽, 尹思, 王娜. 柴达木盆地尖顶山地区低频可控震源“两宽一高”地震资料处理关键技术应用研究[J]. 物探与化探, 2020, 44(2): 313-320.
[7] 马振, 孙成禹, 彭鹏鹏, 姚振岸. 速度误差和地震噪声对最小二乘逆时偏移的影响分析[J]. 物探与化探, 2020, 44(2): 329-338.
[8] 时伟, 林春华, 王维红, 高云路. 双约束变换时窗统计能量比地震波初至拾取方法[J]. 物探与化探, 2019, 43(5): 1064-1073.
[9] 王海立, 陈炳超, 王婷婷, 于宝华, 张树刚, 马立新. 西部高原咸化地表静校正方法应用[J]. 物探与化探, 2018, 42(5): 1064-1068.
[10] 葛志广, 陈永生, 周小仙. 漠河冻土带天然气水合物地震采集关键技术[J]. 物探与化探, 2018, 42(2): 285-291.
[11] 王海立, 王永生, 王彪, 马立新, 张先建. 基于强波阻抗反射界面的静校正方法及应用[J]. 物探与化探, 2018, 42(2): 347-351.
[12] 郭奇, 曾昭发, 于晨霞, 张思萌. 基于高精度字典学习算法的地震随机噪声压制[J]. 物探与化探, 2017, 41(5): 907-913.
[13] 刁瑞, 吴国忱, 尚新民, 芮拥军, 崔庆辉. 地面阵列式微地震数据盲源分离去噪方法[J]. 物探与化探, 2017, 41(3): 521-526.
[14] 肖云飞, 殷厚成. 基于溶洞体照明分析的采集参数论证[J]. 物探与化探, 2017, 41(2): 270-277.
[15] 李逢春, 王润秋, 蒋先艺, 杨剑. 起伏地表地震三维观测系统的实时可视化方法[J]. 物探与化探, 2016, 40(5): 1030-1034.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com