Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (6): 1508-1518    DOI: 10.11720/wtyht.2023.0186
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于改进残差网络的大地电磁反演研究
李思平1(), 刘彩云2(), 熊杰1, 田慧潇1, 王方1
1.长江大学 电子信息学院,湖北 荆州 434023
2.长江大学 信息与数学学院,湖北 荆州 434023
Magnetotelluric inversion based on an improved residual network
LI Si-Ping1(), LIU Cai-Yun2(), XIONG Jie1, TIAN Hui-Xiao1, WANG Fang1
1. School of Electronics Information, Yangtze University, Jingzhou 434023, China
2. School of Information and Mathematics, Yangtze University, Jingzhou 434023, China
全文: PDF(13460 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对传统反演方法存在依赖初始模型、反演时间较长等问题,提出一种基于改进残差网络的大地电磁反演方法。该方法首先构造不同形状和不同电阻率的地电模型,在TM模式下正演得到视电阻率数据,组成数据集;然后在经典的残差网络ResNet基础上进行改进得到一种新的反演网络iResNet(improved residual network),并使用上述数据集训练该网络;最后将视电阻率数据输入到训练好的网络中,直接得到反演结果。实验结果表明,该方法能快速、准确地反演出地电模型的位置、形态和电阻率值,具有较好的泛化能力和抗噪能力,并能有效解决大地电磁实测数据问题。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李思平
刘彩云
熊杰
田慧潇
王方
关键词 残差网络大地电磁反演    
Abstract

Traditional inversion techniques rely on initial models and exhibit prolonged inversion times. This study proposed a magnetotelluric inversion method based on an improved residual network. Specifically, geoelectric models of varying shapes and resistivity values were established, and apparent resistivity data were obtained using the TM mode, forming a dataset. Then, a novel inversion network-iResNet (an improved residual network)-was established by improving classic residual network ResNet, and the new network was trained using the afore-mentioned data set. Finally, the apparent resistivity data were input to trained network, directly producing inversion results. The experimental results demonstrate that the method proposed in this study can accurately determine the positions, shapes, and resistivity values of the geoelectric models through swift inversion, suggesting high generalization and anti-noise capabilities. Therefore, this method can effectively deermine measured magnetotelluric data.

Key wordsresidual network    magnetotelluric    inversion
收稿日期: 2023-05-04      修回日期: 2023-09-07      出版日期: 2023-12-20
:  P631.1  
基金资助:国家自然科学基金项目(62273060);长江大学大学生创新创业项目(Yz2022055)
通讯作者: 刘彩云(1975-),女,博士,副教授,主要研究方向:地球物理反演理论、人工智能。Email:liucaiyun01@hotmail.com
作者简介: 李思平(1998-),女,硕士研究生,主要研究方向:地球物理反演理论、人工智能。Email:202072632@yangtzeu.edu.cn
引用本文:   
李思平, 刘彩云, 熊杰, 田慧潇, 王方. 基于改进残差网络的大地电磁反演研究[J]. 物探与化探, 2023, 47(6): 1508-1518.
LI Si-Ping, LIU Cai-Yun, XIONG Jie, TIAN Hui-Xiao, WANG Fang. Magnetotelluric inversion based on an improved residual network. Geophysical and Geochemical Exploration, 2023, 47(6): 1508-1518.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.0186      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I6/1508
Fig.1  卷积神经网络[13]
Fig.2  残差网络的一般结构
Fig.3  两种典型的残差结构
Fig.4  反演过程
Fig.5  iResNet网络结构[9]
Fig.6  模型示意
分类 参数设置
数据集 训练集 8088
测试集 899
网络设置 学习率 η = 0.001
激活函数 ReLU
优化器 Adam
L2正则化 λ=0.003
Dropout 0.5
训练过程 Epochs 2000
Batch size 500
Table 1  iResNet网络参数设置
Fig.7  部分验证集样本的反演结果
Fig.8  CNN的反演结果[11]
Fig.9  iResNet的反演结果
Fig.10  实验一的反演结果
Fig.11  实验二的反演结果
Fig.12  实验三的反演结果
Fig.13  加入高斯白噪声后的视电阻率
Fig.14  加入3%高斯白噪声后的反演结果
Fig.15  加入5%高斯白噪声后的反演结果
Fig.16  非洲南部部分区域详细地质图[19]
Fig.17  Northern zone的视电阻率
Fig.18  iResNet对Northern zone反演结果
Fig.19  KIM+ETO测线正则化反演结果[18]
[1] 童孝忠. 大地电磁测深有限单元法正演与混合遗传算法正则化反演研究[D]. 长沙: 中南大学, 2008.
[1] Tong X Z. Research of forward using finite element method and regularized inversion using hybrid genetic algorithm in magnetotelluric sounding[D]. Changsha: Central South University, 2008.
[2] 姜奋勇, 叶益信, 陈海文, 等. 基于非结构网格的带地形MT二维Occam反演及应用[J]. 物探与化探, 2022, 46(2):482-489.
[2] Jiang F Y, Ye Y X, Chen H W, et al. Application of 2D inversion of magnetotelluric data bearing terrain information based on an unstructured mesh[J]. Geophysical and Geochemical Exploration, 2022, 46(2):482-489.
[3] 谭捍东. 大地电磁法三维快速松弛反演[J]. 地球物理学报, 2003, 46(6):850-854.
[3] Tan H D. Three-dimensional rapid relaxation inversion fir the magnetotelluric method[J]. Chinese Journal of Geophysics, 2003, 46(6):850-854,
[4] 阮帅, 汤吉, 陈小斌, 等. 三维大地电磁自适应L1范数正则化反演[J]. 地球物理学报, 2020, 63(10):3896-3911.
doi: 10.6038/cjg2020N0453
[4] Ruan S, Tang J, Chen X B, et al. Three-dimensional magnetotelluric inversion based on adaptive L1-norm regularization[J]. Chinese Journal of Geophysics, 2020, 63(10):3896-3911.
[5] 熊杰, 孟小红, 刘彩云, 等. 基于差分进化的大地电磁反演[J]. 物探与化探, 2012, 36(3):448-451.
[5] Xiong J, Meng X H, Liu C Y, et al. Magnetotelluric inversion based on differential evolution[J]. Geophysical and Geochemical Exploration, 2012, 36(3):448-451.
[6] Liu S, Hu X, Liu T, et al. Ant colony optimization inversion of surface and borehole magnetic data under lithological constraints[J]. Journal of Applied Geophysics, 2015, 112(1):115-128.
doi: 10.1016/j.jappgeo.2014.11.010
[7] Conway D, Alexander B, King M, et al. Inverting magnetotelluric responses in a three-dimensional earth using fast forward approximations based on artificial neural networks[J]. Computers & Geosciences, 2019, 127(6):44-52.
doi: 10.1016/j.cageo.2019.03.002
[8] Noh K, Yoon D, Byun J. Imaging subsurface resistivity structure from airborne electromagnetic induction data using deep neural network[J]. Exploration Geophysics, 2020, 51(2):214-220.
doi: 10.1080/08123985.2019.1668240
[9] Liu Z, Chen H, Ren Z, et al. Deep learning audio magnetotellurics inversion using residual-based deep convolution neural network[J]. Journal of Applied Geophysics, 2021, 188(6433):104309.
doi: 10.1016/j.jappgeo.2021.104309
[10] Wang H, Liu W, Xi Z Z. Nonlinear inversion for magnetotelluric sounding based on deep belief network[J]. Journal of Central South University, 2019, 26(9):2482-2494.
doi: 10.1007/s11771-019-4188-2
[11] 廖晓龙, 张志厚, 姚禹, 等. 基于卷积神经网络的大地电磁反演[J]. 中南大学学报:自然科学版, 2020, 51(9):2546-2557.
[11] Liao X L, Zhang Z H, Yao Y, et al. Magnetotelluric inversion based on convolutional neural network[J]. Journal of Central South University:Science and Technology, 2020, 51(9):2546-2557.
[12] 范振宇. 基于卷积神经网络的大地电磁深度学习反演研究[D]. 北京: 中国地质大学(北京), 2020.
[12] Fan Z Y. Magnetotelluric deep learning inversion based on convolutional neural network[D]. Beijing: China University of Geosciences(Beijing), 2020.
[13] 刘倩. 基于深度学习的重力异常反演[D]. 荆州: 长江大学, 2021.
[13] Liu Q. Inversion of gravity anomaly based on deep learning[D]. Jingzhou: Yangtze University, 2021.
[14] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2016:770-778.
[15] Zhang X Y, Zou J H, He K M, et al. Accelerating very deep convolutional networks for classification and detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10):1943-1955
doi: 10.1109/TPAMI.2015.2502579 pmid: 26599615
[16] 王蓉, 熊杰, 刘倩, 等. 基于深度神经网络的重力异常反演[J]. 物探与化探, 2022, 46(2) :451-458.
[16] Wang R, Xiong J, Liu Q, et al. Inversion of gravity anomalies based on a deep neural network[J]. Geophysical and Geochemical Exploration, 2022, 46(2):451-458.
[17] Begg G C, Griffin W L, Natapov L M, et al. The lithospheric architecture of Africa:Seismic tomography,mantle petrology,and tectonic evolution[J]. Geosphere, 2009, 5(1):23-50.
doi: 10.1130/GES00179.1
[18] Khoza T D, Jones A G, Muller M R, et al. Lithospheric structure of an Archean craton and adjacent mobile belt revealed from 2-D and 3-D inversion of magnetotelluric data:Example from southern Congo craton in northern Namibia[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(8):4378-4397.
doi: 10.1002/jgrb.v118.8
[19] Singletary S J, Hanson R E, Martin M W, et al. Geochronology of basement rocks in the Kalahari Desert,Botswana,and implications for regional Proterozoic tectonics[J]. Precambrian Research, 2003, 121(1/2):47-71.
doi: 10.1016/S0301-9268(02)00201-2
[20] Goscombe B, Hand M, Gray D, et al. The metamorphic architecture of a transpressional orogen:The Kaoko Belt,Namibia[J]. Journal of Petrology, 2003, 44(4):679-711.
doi: 10.1093/petrology/44.4.679
[1] 史全党, 孔令业, 吴超, 丁艳雪, 刘泽民, 于雪, 王江. 基于小波边缘分析与井—震联合建模的波阻抗反演技术在陆梁隆起带储层预测中的应用[J]. 物探与化探, 2023, 47(6): 1425-1432.
[2] 付宇, 艾寒冰, 姚振岸, 梅竹虚, 苏可嘉. 基于正余弦算法的瑞利波频散曲线反演[J]. 物探与化探, 2023, 47(6): 1467-1478.
[3] 刘湘浩, 刘四新, 胡铭奇, 孙中秋, 王千. 基于OMAGA-BP算法的高密度电阻率法反演研究[J]. 物探与化探, 2023, 47(6): 1519-1527.
[4] 王康, 刘彩云, 熊杰, 王永昌, 胡焕发, 康佳帅. 基于全卷积残差收缩网络的地震波阻抗反演[J]. 物探与化探, 2023, 47(6): 1538-1546.
[5] 连晟, 程正璞, 罗旋, 李敬杰, 田蒲源. 基于岩石物性引导的地球物理联合反演研究[J]. 物探与化探, 2023, 47(6): 1580-1587.
[6] 陈人杰, 徐乐意, 刘灵, 朱焕, 易浩, 姜曼. 基于协克里金技术的陆相地层反演低频模型构建方法[J]. 物探与化探, 2023, 47(6): 1595-1601.
[7] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[8] 丁志军, 罗维斌, 连伟章, 张星, 何海颦. 基于两步变异差分进化算法的激电测深一维反演[J]. 物探与化探, 2023, 47(4): 1033-1039.
[9] 刘豹, 杨宇山, 刘天佑. 铜绿山矿田成矿远景预测及三维地质模型[J]. 物探与化探, 2023, 47(4): 906-915.
[10] 张阳阳, 杜威, 王芝水, 缪旭煌, 张翔. 基于Lévay飞行的粒子群算法在大地电磁反演中的应用[J]. 物探与化探, 2023, 47(4): 986-993.
[11] 许第桥, 李茂. 二连盆地宽频大地电磁法数据精细反演处理研究——以满都拉图地区的数据为例[J]. 物探与化探, 2023, 47(4): 994-1001.
[12] 陈晓, 曾志文, 邓居智, 张志勇, 陈辉, 余辉, 王彦国. 基于不等式和Gramian约束的MT和重力正则化联合反演[J]. 物探与化探, 2023, 47(3): 575-583.
[13] 张瑾爱, 杨渊, 张林. 基于重力异常的镇安西部隐伏岩体空间分布规律研究[J]. 物探与化探, 2023, 47(3): 618-627.
[14] 陈子龙, 王海燕, 郭华, 王光文, 赵玉莲. 地震全波形反演研究进展与应用现状综述[J]. 物探与化探, 2023, 47(3): 628-637.
[15] 游越新, 邓居智, 陈辉, 余辉, 高科宁. 综合物探方法在云南澜沧老厂多金属矿区深部找矿中的应用[J]. 物探与化探, 2023, 47(3): 638-647.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com