Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (6): 1538-1546    DOI: 10.11720/wtyht.2023.1569
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于全卷积残差收缩网络的地震波阻抗反演
王康1(), 刘彩云2(), 熊杰1, 王永昌1, 胡焕发1, 康佳帅1
1.长江大学 电子信息学院,湖北 荆州 434023
2.长江大学 信息与数学学院,湖北 荆州 434023
Seismic wave impedance inversion based on the fully convolutional residual shrinkage network
WANG Kang1(), LIU Cai-Yun2(), XIONG Jie1, WANG Yong-Chang1, HU Huan-Fa1, KANG Jia-Shuai1
1. School of Electronics & Information Engineering,Yangtze University,Jingzhou 434023,China
2. School of Information and Mathematics,Yangtze University,Jingzhou 434023,China
全文: PDF(5344 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

卷积神经网络对地震波阻抗反演已经能取得不错的效果,但反演精度、抗噪声性能有待提高,针对此问题,本文提出了一种基于带逐通道阈值的全卷积残差收缩网络(FCRSN-CW)的地震波阻抗反演方法。该方法首先在残差网络的结构上加入了“注意力机制”和“软阈值化”构成反演网络,然后用波阻抗数据通过正演计算得到合成地震数据集,接着用该数据集训练全卷积残差收缩网络,最后将地震数据输入到训练好的网络中,直接得到反演结果。理论模型反演结果表明,该网络能准确地反演出波阻抗,具有良好的学习能力和抗噪声性能。实测数据反演结果表明,该方法能有效解决地震波阻抗反演问题。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王康
刘彩云
熊杰
王永昌
胡焕发
康佳帅
关键词 卷积神经网络波阻抗反演全卷积收缩网络逐通道阈值    
Abstract

Convolutional neural networks(CNNs) have achieved good results in seismic wave impedance inversion,but the inversion accuracy and anti-noise performance need to be improved.Hence,this study proposed a seismic wave impedance inversion method based on the fully convolutional residual shrinkage network with channel-wise thresholds(FCRSN-CW).In this method,the attention mechanism and the soft thresholding were first added to the structure of the residual network to form a inversion network.Then,a synthetic seismic dataset was obtained through forward calculation using wave impedance data.Subsequently,the dataset was applied to train the FCRSN-CW.Finally,the seismic data were put into the trained FCRSN-CW to obtain the inversion results directly.The inversion results of the theoretical model show that the FCRSN-CW can accurately invert the wave impedance and possesses satisfactory learning capacity and anti-noise performance.The inversion results of field data demonstrates that the method based on FCRSN-CW can effectively achieve seismic wave impedance inversion.

Key wordsconvolutional neural network    wave impedance inversion    fully convolutional shrinkage network    channel-wise threshold
收稿日期: 2022-11-25      修回日期: 2023-09-08      出版日期: 2023-12-20
:  P631.4  
基金资助:国家自然科学基金项目(62273060);国家自然科学基金项目(61673006);长江大学大学生创新创业项目(Yz2022055)
通讯作者: 刘彩云(1975-),女,博士,副教授,主要研究方向为地球物理反演理论、人工智能、小波分析。Email:liucaiyun01@hotmail.com
作者简介: 王康(1998-),男,硕士,主要研究方向为地球物理反演理论、人工智能。Email:2021720719@yangtzeu.edu.cn
引用本文:   
王康, 刘彩云, 熊杰, 王永昌, 胡焕发, 康佳帅. 基于全卷积残差收缩网络的地震波阻抗反演[J]. 物探与化探, 2023, 47(6): 1538-1546.
WANG Kang, LIU Cai-Yun, XIONG Jie, WANG Yong-Chang, HU Huan-Fa, KANG Jia-Shuai. Seismic wave impedance inversion based on the fully convolutional residual shrinkage network. Geophysical and Geochemical Exploration, 2023, 47(6): 1538-1546.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1569      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I6/1538
Fig.1  FCRSN-CW地震波阻抗反演流程
残差块个数 2 3 4 5
均方根误差 0.00052 0.00021 0.00027 0.00031
Table 1  不同残差块个数预测阻抗与真实阻抗的均方根误差
Fig.2  全卷积残差收缩网络的网络结构
Fig.3  改进前(a)、后(b)的残差模块(逐通道不同阈值)
Fig.4  由30 Hz、0°相位雷克子波产生的波阻抗(a)和合成地震记录(b)
Fig.5  FCRN[19]和FCRSN-CW分别对第650道(a)和第1250道(b)的反演结果
Fig.6  FCRN[19](a)和FCRSN-CW(b)的预测阻抗
子波相位 30° 60° 90° 120° 150°
均方误差 0.0002 0.2056 0.1259 0.0926 0.1054 0.1623
Table 2  不同相位子波预测阻抗与真实阻抗的均方根误差
Fig.7  带噪声数据的反演预测阻抗
噪声强度/dB 35 25 15 5
FCRN反演结果均方误差 0.0583 0.0603 0.0797 0.2116
FCRSN-CW反演结果均方误差 0.0002 0.0004 0.0045 0.1411
Table 3  不同噪声强度下预测阻抗与真实阻抗的均方误差
噪声强度/dB 35 25 15 5
浅层数据 0.9963 0.9881 0.8772 0.6335
深层数据 0.9998 0.9997 0.9974 0.9009
Table 4  预测阻抗与真实阻抗在浅层和深层的PCC
Fig.8  Volve油田的位置(a)和来自Volve油田的地震数据和测井数据(b)
Fig.9  输入地震数据(a)以及测井阻抗和预测阻抗(b)
相位 10° 20° 30°
10 Hz 0.8859 0.9068 0.8563 0.8902
20 Hz 0.9427 0.9158 0.9007 0.9153
30 Hz 0.8969 0.9104 0.8927 0.8932
40 Hz 0.8863 0.9095 0.8884 0.8562
Table 5  不同相位和频率子波预测阻抗与真实阻抗的PCC
[1] 李庆忠. 论地震约束反演的策略[J]. 石油地球物理勘探, 1998, 33(4):423-438,572.
[1] Li Q Z. On strategy of seismic restricted inversion[J]. Oil Geophysical Prospecting, 1998, 33(4):423-438,572.
[2] 曾凡玲. 地震波阻抗反演及其在储层检测中的应用[D]. 成都: 成都理工大学, 2012.
[2] Zeng F L. Seismic impedance inversion and its application in reservoir prediction[D]. Chengdu: Chengdu University of Technology, 2012.
[3] Huang W, Zhou H W. Least-squares seismic inversion with stochastic conjugate gradient method[J]. Journal of Earth Science, 2015, 26(4):463-470.
doi: 10.1007/s12583-015-0553-8
[4] Liu C, Song C, Lu Q, et al. Impedance inversion based on L1 norm regularization[J]. Journal of Applied Geophysics, 2015, 120:7-13.
doi: 10.1016/j.jappgeo.2015.06.002
[5] 张繁昌, 印兴耀, 吴国忱, 等. 用模拟退火神经网络技术进行波阻抗反演[J]. 石油大学学报:自然科学版, 1997, 21(6):16-18.
[5] Zhang F C, Yin X Y, Wu G C, et al. Impedance inversion using simulated annealing neural network technique[J]. Journal of the University of Petroleum,China:Natural Science Edition, 1997, 21(6):16-18.
[6] 聂茹, 岳建华, 邓帅奇. 免疫遗传算法及其在波阻抗反演中的应用[J]. 计算机应用研究, 2010, 27(4):1273-1276.
[6] Nie R, Yue J H, Deng S Q. Application of immune genetic algorithm in wave impedance inversion[J]. Application Research of Computers, 2010, 27(4):1273-1276.
[7] Yang H J, Xu Y Z, Peng G X, et al. Particle swarm optimization and its application to seismic inversion of igneous rocks[J]. International Journal of Mining Science and Technology, 2017, 27(2):349-357.
doi: 10.1016/j.ijmst.2017.01.019
[8] Conti C R, Roisenberg M, Neto G S, et al. Fast seismic inversion methods using ant colony optimization algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5):1119-1123.
doi: 10.1109/LGRS.2012.2231397
[9] Wang B F, Zhang N, Lu W K, et al. Deep-learning-based seismic data interpolation:A preliminary result[J]. Geophysics, 2019, 84(1):V11-V20.
[10] 付超, 林年添, 张栋, 等. 多波地震深度学习的油气储层分布预测案例[J]. 地球物理学报, 2018, 61(1):293-303.
doi: 10.6038/cjg2018L0193
[10] Fu C, Lin N T, Zhang D, et al. Prediction of reservoirs using multi-component seismic data and the deep learning method[J]. Chinese Journal of Geophysics, 2018, 61(1):293-303.
[11] 赵明, 陈石, Dave Yuen. 基于深度学习卷积神经网络的地震波形自动分类与识别[J]. 地球物理学报, 2019, 62(1):374-382.
doi: 10.6038/cjg2019M0151
[11] Zhao M, Chen S, Yuen D. Waveform classification and seismic recognition by convolution neural network[J]. Chinese Journal of Geophysics, 2019, 62(1):374-382.
[12] Zhang H H, Zhang G Z, Gao J H, et al. Seismic impedance inversion based on geophysical-guided cycle-consistent generative adversarial networks[J]. Journal of Petroleum Science and Engineering, 2022, 218:111003.
doi: 10.1016/j.petrol.2022.111003
[13] 梁立锋, 刘秀娟, 张宏兵, 等. 超参数GRU-CNN 混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1):133-139.
[13] Liang L F, Liu X J, Zhang H B, et al. A study of the effect of hyperparameters on GRU-CNN hybrid deep learning EI inversion[J]. Geophysical and Geochemical Exploration, 2021, 45(1):133-139.
[14] Das V, Pollack A, Wollner U, et al. Convolutional neural network for seismic impedance inversion[J]. Geophysics, 2019, 84(6):R869-R880.
[15] Puzyrev V, Egorov A, Pirogova A, et al. Seismic inversion with deep neural networks:A feasibility analysis[C]// London:81st EAGE Conference and Exhibition 2019,European Association of Geoscientists & Engineers, 2019:1-5.
[16] Xu P C, Lu W K, Tang J, et al. High-resolution reservoir prediction using convolutional neural networks[C]// London:81st EAGE Conference and Exhibition 2019,European Association of Geoscientists & Engineers, 2019:1-5.
[17] Guo R, Zhang J J, Liu D, et al. Application of bi-directional long short-term memory recurrent neural network for seismic impedance inversion[C]// London:81st EAGE Conference and Exhibition 2019,European Association of Geoscientists & Engineers,2019, 2019(1):1-5.
[18] Wu B Y, Xie Q, Wu B H. Seismic impedance inversion based on residual attention network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-17.
[19] Wu B Y, Meng D L, Wang L L, et al. Seismic impedance inversion using fully convolutional residual network and transfer learning[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(12):2140-2144.
doi: 10.1109/LGRS.8859
[20] Zhao M H, Zhong S S, Fu X Y, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7):4681-4690.
doi: 10.1109/TII.9424
[1] 史全党, 孔令业, 吴超, 丁艳雪, 刘泽民, 于雪, 王江. 基于小波边缘分析与井—震联合建模的波阻抗反演技术在陆梁隆起带储层预测中的应用[J]. 物探与化探, 2023, 47(6): 1425-1432.
[2] 郑孝诚, 张明华, 任伟. 卷积神经网络在山东金矿勘查预测中的应用[J]. 物探与化探, 2023, 47(6): 1433-1440.
[3] 周慧, 孙成禹, 刘英昌, 蔡瑞乾. 基于DC-UNet卷积神经网络的强噪声压制方法[J]. 物探与化探, 2023, 47(5): 1288-1297.
[4] 朱剑兵, 高照奇, 田亚军, 梁兴城. 带有横向约束的全局优化波阻抗反演方法及应用[J]. 物探与化探, 2022, 46(6): 1477-1484.
[5] 梁立锋, 刘秀娟, 张宏兵, 陈程浩, 陈锦华. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1): 133-139.
[6] 王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2): 394-400.
[7] 万晓明, 梁劲, 梁金强, 林霖, 沙志彬, 柴祎, 蔡振华. 叠后波阻抗无井反演技术在T研究区天然气水合物分布预测中的应用[J]. 物探与化探, 2016, 40(3): 438-444.
[8] 孙炜, 王彦春, 李梅, 杨锐, 郭海华, 李玉凤. 利用叠前地震数据预测火山岩储层裂缝[J]. 物探与化探, 2010, 34(2): 229-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com