Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (6): 1500-1507    DOI: 10.11720/wtyht.2023.1597
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
重力位三阶梯度张量异常的波数域转换计算及其DEXP定量解释方法
邱峰()
江西省水利科学院 建材与岩土研究所,江西 南昌 330029
Methods for wavenumber-domain transform calculation and DEXP-based quantitative interpretation of third-order gradient tensor anomalies of gravitational potential
QIU Feng()
Research Institute of Building Materials and Geomechanics, Jiangxi Academy of Water Science and Engineering, Nanchang 330029, China
全文: PDF(6247 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

现在的仪器测量技术还不能直接测量重力位三阶梯度张量,本文提供了一种基于重力异常及重力梯度张量数据的重力位三阶梯度张量波数域转换计算方法。为验证计算方法的正确性,文中计算了三维模型重力位三阶梯度张量异常,并将重力位三阶梯度张量波数域转换结果和模型正演结果进行对比,结果表明所采用的波数域转换方法是可行的,并且相对于重力异常数据,基于重力梯度张量数据的波数域转换结果精度更高,其均方根误差不超过1 pMKS。此外,基于Vinton盐丘区实测数据利用波数域转换方法得到该地区的重力三阶梯度张量数据,并将其用于DEXP方法的数据解释中,所得的深度以及边界结果与前人的研究结果相符合。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱峰
关键词 重力位三阶梯度张量异常波数域转换计算DEXP定量解释    
Abstract

Since the current instrumental measurement technology cannot directly measure the third-order gradient tensor of gravitational potential, this study proposed a wavenumber-domain transform calculation method for the third-order gradient tensor of gravitational potential based on the gravity anomaly and gradient tensor data. To verify the correctness of this method, this study computed the third-order gradient tensor anomalies of gravitational potential using a 3D model and compared the wavenumber-domain transform calculation results with the forward modeling results, suggesting that the wavenumber-domain transform calculation method is feasible. Moreover, the wavenumber-domain transform calculation results based on gravitational gradient tensor data were more accurate than those based on gravity anomaly data, yielding a root mean square error not exceeding 1 pMKS. In addition, based on the measured data of the Vinton salt dome area, the third-order gradient tensor data of gravitational potential of this area were obtained using the wavenumber-domain transform calculation method. The obtained data were used for DEXP-based data interpretation, attaining consistent depth and boundary results with the previous research results.

Key wordsthird-order gradient tensor anomaly of gravitational potential    wavenumber domain    transform calculation    DEXP    quantitative interpretation
收稿日期: 2022-10-01      修回日期: 2023-06-05      出版日期: 2023-12-20
:  P631  
基金资助:江西省技术创引导类计划“科技+水利”联合计划(2022KSG01003);江西省技术创引导类计划“科技+水利”联合计划(2023KSG01008)
作者简介: 邱峰(1992-),男,工程师,研究方向为提防隐患探测。Email:1102979410@qq.com
引用本文:   
邱峰. 重力位三阶梯度张量异常的波数域转换计算及其DEXP定量解释方法[J]. 物探与化探, 2023, 47(6): 1500-1507.
QIU Feng. Methods for wavenumber-domain transform calculation and DEXP-based quantitative interpretation of third-order gradient tensor anomalies of gravitational potential. Geophysical and Geochemical Exploration, 2023, 47(6): 1500-1507.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1597      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I6/1500
Fig.1  直立长方体模型几何示意
Fig.2  模型重力位一阶至三阶张量异常空间分布
Fig.3  基于重力异常的重力位三阶梯度张量FFT转换与正演计算各分量之间的差异
模型的RMS误差/pMKS 重力位三阶梯度张量
Wxxx Wxxy Wxxz W x y y Wxyz Wxzz Wyyy Wyyz Wyzz Wzzz
不去除边界畸变值 7.66 0.17 10.61 0.16 0.04 7.64 7.32 10.11 7.29 14.66
去掉部分边界畸变值 2.54 0.17 0.17 0.16 0.04 2.51 2.43 0.16 2.39 0.23
Table 1  基于重力异常的重力三阶梯度张量异常转换计算结果与理论值间的均方根误差
Fig.4  基于重力梯度张量数据的重力位三阶梯度张量FFT转换与正演计算各分量之间的差异
重力位三阶梯度张量 Wxxx Wxxy Wxxz Wxyy Wxyz Wxzz Wyyy Wyyz Wyzz Wzzz
模型的RMS误差/pMKS 0.15 0.14 0.47 0.14 0.04 0.06 0.15 0.47 0.06 0.90
Table 2  基于重力梯度张量的重力三阶梯度张量异常转换计算结果与理论值间的均方根误差
Fig.5  处理后的Vinton盐丘区重力梯度张量数据
a—Txx异常;b—Txy异常;c—Txz异常;d—Tyy异常;e—Tyz异常;f—Tzz异常
Fig.6  转换得到的Vinton盐丘区重力位三阶梯度张量数据
a—Wxxx;b—Wxxy;c—Wxxz;d—Wxyy;e—Wxyz;f—Wxzz;g—Wyyy;h—Wyyz;i—Wyzz;j—Wzzz
Fig.7  波数域转换所得的重力位三阶张量数据的DEXP变换结果
a—Ωxxx;b—Ωxxy;c—Ωxxz;d—Ωxyy;e—Ωxzz;f—Ωyyy;g—Ωyyz;h—Ωyzz;i—Ωzzz
[1] Balakin A B, Daishev R A, Murzakhanov Z G, et al. Laser-interferometric detector of the first,second and third derivatives of the potential of the Earth gravitational field[J]. Izvestiya vysshikh uchebnykh zavedenii,seriya Geologiya i Razvedka, 1997, 1:101-107.
[2] DiFrancesco D, Meyer T J, Christensen A, et al. Gravity gradiometry-today and tomorrow[C]// 11th SAGA Biennial Technical Meeting and Exhibition, 2009.
[3] Brieden P, Muller J, Flury J, et al. The mission OPTIMA-novelties and benefit[R]. Geotechnologien,Science Report, 2010.
[4] Fantino E, Casotto S. Methods of harmonic synthesis for global geopotential models and their first-,second- and third-order gradients[J]. Journal of Geodesy, 2009, 83(7):595-619.
doi: 10.1007/s00190-008-0275-0
[5] Casotto S, Fantino E. Gravitational gradients by tensor analysis with application to spherical coordinates[J]. Journal of Geodesy, 2009, 83(7):621-634.
doi: 10.1007/s00190-008-0276-z
[6] Fukushima T. Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers:II first-,second-,and third-order derivatives[J]. Journal of Geodesy, 2012, 86(4):271-285.
doi: 10.1007/s00190-011-0519-2
[7] Rosi G, Cacciapuoti L, Sorrentino F, et al. Measurements of the gravity-field curvature by atom interferometry[J]. Physical Review Letters, 2015, 114(1):13001.
pmid: 25615464
[8] Rothleitner C, Francis O. Measuring the Newtonian constant of gravitation with a differential free-fall gradiometer:A feasibility study[J]. The Review of Scientific Instruments, 2014, 85(4):469-526.
[9] 陈钊, 李辉, 邢乐林, 等. 重力垂直梯度非线性变化研究[J]. 大地测量与地球动力学, 2014, 34(2):27-30.
[9] Chen Z, Li H, Xing L L, et al. Study on non-linear variation of vertical gradient of gravity[J]. Journal of Geodesy and Geodynamics, 2014, 34(2):27-30.
[10] Fedi M. DEXP:A fast method to determine the depth and the structural index of potential fields sources[J]. Geophysics, 2007, 72(1):I1-I11.
[11] Fedi M, Abbas M A. A fast interpretation of self-potential data using the depth from extreme points method[J]. Geophysics, 2013, 78(2):E107-E116.
[12] 杜劲松, 邱峰. 重力位三阶梯度张量及其勘探能力初步分析[J]. 大地测量与地球动力学, 2019, 39(4):331-338.
[12] Du J S, Qiu F. Third-order gradient tensor of gravitational potential and its exploration capacity analysis[J]. Geodesy and Geodynamics, 2019, 39(4):331-338.
[13] 邱峰, 杜劲松, 陈超. 重力异常及其梯度张量DEXP定量解释方法的影响因素分析[J]. 物探与化探, 2020, 44(3):540-549.
[13] Qiu F, Du J S, Chen C. Influence factor analysis of quantitative interpretation for gravity anomaly and its gradient tensor by DEXP[J]. Geophysical and Geochemical Exploration, 2020, 44(3):540-549.
[14] Mickus K L, Hinojosa J H. The complete gravity gradient tensor derived from the vertical component of gravity:a Fourier transform technique[J]. Journal of Applied Geophysics, 2001, 46(3):159-174.
doi: 10.1016/S0926-9851(01)00031-3
[15] 舒晴, 朱晓颖, 周坚鑫, 等. 重力梯度张量分量频率域转换处理方法[J]. 地球物理学进展, 2016. 31(6):2633-2640.
[15] Shu Q, Zhu X Y, Zhou J X, et al. Frequency domain transformation method for gravity gradient tensor components[J]. Progress in Geophysics, 2016, 31(6):2633-2640.
[16] 邱峰, 杜劲松, 陈超. 矩形棱柱体重力位三阶梯度张量正演计算公式[J]. 大地测量与地球动力学, 2019, 39(3):313-316.
[16] Qiu F, Du J S, Chen C. Forward modeling formulae for third-order gradient tensor of gravitational potential caused by the right rectangular prism[J]. Journal of Geodesy and Geodynamics, 2019, 39(3):313-316.
[17] Li X. Vertical resolution:Gravity versus vertical gravity gradient[J]. The Leading Edge, 2001, 20(8):901-904.
doi: 10.1190/1.1487304
[18] Oliveira V C, Barbosa V C F. 3D radial gravity gradient inversion[J]. Geophysical Journal International, 2013, 195(2):883-902.
doi: 10.1093/gji/ggt307
[19] Geng M X, Huang D N, Yang Q J, et al. 3D inversion of airborne gravity-gradiometry data using cokriging[J]. Geophysics, 2014, 79(4):G37-G47.
[20] Ennen C. Mapping gas-charged fault blocks around the Vinton Salt Dome,Louisiana using gradiometry data[D]. Houston: University of Houston, 2012.
[1] 冯军, 蒋文, 张征. 西北某石英脉型金矿综合物探特征及定量解释实例[J]. 物探与化探, 2022, 46(3): 661-667.
[2] 邱峰, 杜劲松, 陈超. 重力异常及其梯度张量DEXP定量解释方法的影响因素分析[J]. 物探与化探, 2020, 44(3): 540-549.
[3] 李望明, 吴述来, 易强. 利用管波信息进行定量解释的方法[J]. 物探与化探, 2017, 41(2): 311-315.
[4] 王兴春, 郑学萍, 邓晓红, 张杰, 武军杰, 杨毅, 智庆全, 杨启安. 定源回线水平分量特性及其应用效果[J]. 物探与化探, 2016, 40(6): 1166-1172.
[5] 赵洋洋, 陈超, 石浩. 基于断层模型扫描的地质体边界识别方法与应用[J]. 物探与化探, 2016, 40(5): 1035-1039.
[6] 刘永亮, 孙海川, 鲁国防. 综合物探在平山湖地区煤炭勘查中的应用[J]. 物探与化探, 2015, 39(4): 738-742.
[7] 张杰, 邓晓红, 谭捍东, 吕国印, 武军杰, 王兴春, 杨毅. 地—井瞬变电磁资料矢量交会解释方法[J]. 物探与化探, 2015, 39(3): 572-579.
[8] 刘建利, 李西周, 张泉. 重、磁、电联合反演在银额盆地定量解释中的应用[J]. 物探与化探, 2013, 37(5): 853-858.
[9] 吴庆曾, 李洪涛, 杨进平. 声波检测穿透信号波形变化规律和量化的探讨[J]. 物探与化探, 2012, 36(1): 144-148.
[10] 李杰, 陈宣华, 张交东, 周琦, 刘刚, 刘志强, 徐燕, 李冰, 杨婧. 频率—波数域频散曲线提取方法及程序设计[J]. 物探与化探, 2011, 35(5): 684-688.
[11] 肖锋, 孟令顺, 吴燕冈. 在波数域计算一维重磁异常导数的Matlab语言算法[J]. 物探与化探, 2008, 32(3): 316-320.
[12] 黄玲, 曾昭发, 王者江, 吴丰收. 钢筋混凝土缺陷的探地雷达检测模拟与成像效果[J]. 物探与化探, 2007, 31(2): 181-185,180.
[13] 张凤旭,孟令顺,张凤琴,杨恕,赵承民. 波数域重力归一化总梯度法中的圆滑滤波因子[J]. 物探与化探, 2005, 29(3): 248-252.
[14] 封军鸿. GDT高分辨率探测仪在水文勘测中的应用[J]. 物探与化探, 2004, 28(1): 57-58.
[15] 何裕盛. 地下动态导体充电法高精度定量解释[J]. 物探与化探, 2001, 25(3): 215-222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com