Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (6): 1467-1478    DOI: 10.11720/wtyht.2023.1239
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于正余弦算法的瑞利波频散曲线反演
付宇1,2(), 艾寒冰1,2,3, 姚振岸1,2(), 梅竹虚1,2, 苏可嘉1,2,4
1.江西省防震减灾与工程地质灾害探测工程研究中心,江西 南昌 330013
2.东华理工大学 地球物理与测控技术学院,江西 南昌 330013
3.中国地质大学(武汉) 地球物理与空间信息学院,湖北 武汉 430074
4.核工业二七0研究所,江西 南昌 330200
Inversion of the Rayleigh wave dispersion curves based on the sine-cosine algorithm
FU Yu1,2(), AI Han-Bing1,2,3, YAO Zhen-An1,2(), MEI Zhu-Xu1,2, SU Ke-Jia1,2,4
1. Engineering Research Center for Seismic Disaster Prevention and Engineering Geological Disaster Detection of Jiangxi Province(East China University of Technology),Nanchang 330013,China
2. School of Geophysics and Measurement-control Technology,East China University of Technology,Nanchang 330013,China
3. School of Geophysics and Geomatics, China University of Geosciences(Wuhan),Wuhan 430074,China
4. Research Institute No.270,CNNC,Nanchang 330200,China
全文: PDF(6242 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

瑞利波在工程勘察领域应用广泛,通过反演瑞利波频散曲线可有效地获取地层信息,但频散曲线反演中传统全局优化算法存在收敛速度慢、收敛精度低和易早熟的问题。对此,本文引入一种新的全局优化算法——正余弦算法(SCA)进行瑞利波频散曲线反演研究。SCA基于正余弦函数数学性质,应用多个随机参数和自适应变量调整寻优过程中的探索和开发能力,在获得高精度解的同时还保证了收敛速度以及稳定性。首先利用4个不含噪声模型验证了SCA用于频散曲线反演的可行性;随后往模型中加入15%的随机噪声说明了SCA具有较强的抗干扰能力;接着将SCA与粒子群算法(PSO)进行对比,证明了SCA反演频散曲线能得到高精度和高稳定性的解;最后用冰岛Arnarbælidi和美国怀俄明地区的地震数据检验SCA处理实际数据的能力。理论模型试算与实测资料分析的结果表明,SCA具有快速、高精度、稳定、实用性强的特点,可有效地应用于瑞利波频散曲线的定量解释。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付宇
艾寒冰
姚振岸
梅竹虚
苏可嘉
关键词 瑞利波频散曲线反演全局优化正余弦算法    
Abstract

Rayleigh wave is widely used in engineering investigation and surveys.The inversion of its dispersion curves allows for effectively obtaining stratigraphic information.However,conventional global optimization algorithms in the dispersion curve inversion have a slow convergence rate and low convergence precision and are prone to prematurity.Therefore,this study introduced a novel global optimization algorithm—the sine cosine algorithm (SCA)—to solve the problems mentioned above.Based on the mathematical properties of sine and cosine functions,the SCA can adjust the exploration and development capabilities during the optimization using multiple random parameters and adaptive variables.As a result,it can ensure a high convergence rate and great stability while obtaining high-accuracy solutions.First,the feasibility of the SCA for the dispersion curve inversion was verified using four noise-free models.Then,the strong anti-interference ability of the SCA was proved by adding 15% of random noise to the models.Afterward,it was verified that SCA can yield high-precision,high-stability solutions in the dispersion curve inversion by comparison with the particle swarm optimization (PSO) approach.Finally,the practicability of the SCA was confirmed using seismic data from Arnarbælidi in Iceland and Wyoming in the USA.As indicated by the calculation results of theoretical models and the analysis of measured data,the SCA has a high processing speed,precision,stability,and practicability and thus allows for effective quantitative interpretation of the Rayleigh wave dispersion curves.

Key wordsRayleigh wave    dispersion curve inversion    global optimization    sine-cosine algorithm
收稿日期: 2022-08-05      修回日期: 2023-09-26      出版日期: 2023-12-20
:  P631.4  
基金资助:江西省教育厅科学技术项目(GJJ200728);江西省自然科学基金项目(20212BAB211003);国家自然科学基金项目(42004113);江西省防震减灾与工程地质灾害探测工程研究中心开放基金项目(SDGD202006)
通讯作者: 姚振岸(1990-),男,博士,讲师,硕士研究生导师,主要从事地震勘探方面的科研与教学工作。Email:an6428060@163.com
作者简介: 付宇(1997-),男,在读硕士研究生,主要从事地震面波勘探方面的学习与研究工作。Email:1635504789@qq.com
引用本文:   
付宇, 艾寒冰, 姚振岸, 梅竹虚, 苏可嘉. 基于正余弦算法的瑞利波频散曲线反演[J]. 物探与化探, 2023, 47(6): 1467-1478.
FU Yu, AI Han-Bing, YAO Zhen-An, MEI Zhu-Xu, SU Ke-Jia. Inversion of the Rayleigh wave dispersion curves based on the sine-cosine algorithm. Geophysical and Geochemical Exploration, 2023, 47(6): 1467-1478.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1239      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I6/1467
Fig.1  SCA算法流程
模型 层序号 模型参数 搜索范围
vs/(m·s-1) vp/(m·s-1) ρ/(g·cm-3) h/m vs/(m·s-1) h/m
模型A 1 200 780 1.9 5 100~300 2.5~7.5
均匀半空间 350 850 1.9 175~525
模型B 1 200 663 1.9 2 100~300 1~3
2 300 995 1.9 4 150~450 2~6
3 400 1327 1.9 6 200~600 3~9
均匀半空间 500 1658 1.9 250~750
模型C 1 200 663 1.9 2 100~300 1~3
2 160 673 1.9 4 80~240 2~6
3 300 1102 1.9 6 150~450 3~9
均匀半空间 400 1470 1.9 200~600
模型D 1 150 498 1.9 2 75~225 1~3
2 250 829 1.9 4 125~375 2~6
3 200 841 1.9 6 100~300 3~9
均匀半空间 400 1470 1.9 200~600
Table 1  模型参数及反演搜索范围
Fig.2  模型A不含噪声理论数据反演结果
a—反演所得频散曲线;b—反演的横波速度剖面
模型 参数 真实值 不含噪声 含噪声
反演均值 相对误差/% 标准差 反演均值 相对误差/% 标准差
模型A vs1/(m·s-1) 200 199.54 0.23% 1.28 199.69 0.15% 2.71
vs2/(m·s-1) 350 347.90 0.60% 5.98 350.79 0.23% 9.07
H1/m 5 4.76 4.76% 0.18 4.75 5.00% 0.22
模型B vs1/(m·s-1) 200 200.94 0.47% 2.52 200.95 0.47% 3.82
vs2/(m·s-1) 300 300.75 0.25% 7.42 304.07 1.36% 15.60
vs3/(m·s-1) 400 399.19 0.20% 9.34 391.88 2.03% 25.47
vs4/(m·s-1) 500 500.19 0.04% 6.03 499.62 0.08% 6.80
H1/m 2 2.05 2.52% 0.11 2.02 0.83% 0.16
H2/m 4 3.99 0.24% 0.28 3.96 1.12% 0.18
H3/m 6 5.59 6.76% 0.53 5.61 6.54% 0.97
模型C vs1/(m·s-1) 200 197.78 1.11% 9.25 199.90 0.05% 14.71
vs2/(m·s-1) 160 161.15 0.72% 4.52 160.55 0.34% 5.35
vs3/(m·s-1) 300 286.04 4.65% 32.13 285.78 4.74% 22.89
vs4/(m·s-1) 400 397.61 0.60% 13.58 397.19 0.70% 18.96
H1/m 2 1.97 1.57% 0.17 1.91 4.51% 0.23
H2/m 4 3.86 3.58% 0.43 3.85 3.71% 0.30
H3/m 6 5.62 6.28% 1.09 5.51 8.16% 0.43
模型D vs1/(m·s-1) 150 150.58 0.39% 1.03 149.80 0.13% 2.92
vs2/(m·s-1) 250 252.30 0.92% 4.25 251.41 0.56% 7.38
vs3/(m·s-1) 200 199.81 0.09% 3.94 202.01 1.01% 4.41
vs4/(m·s-1) 400 400.90 0.23% 4.80 400.46 0.12% 6.36
H1/m 2 2.03 1.41% 0.07 2.03 1.36% 0.08
H2/m 4 3.93 1.78% 0.14 3.98 0.44% 0.24
H3/m 6 6.09 1.45% 0.23 5.99 0.14% 0.26
Table 2  模型A、B、C、D含噪声与不含噪声反演结果
Fig.3  模型B、C和D不含噪声理论数据反演结果
a1,b1,c1—分别为模型B、C和D反演所得频散曲线;a2,b2,c2—分别为模型B、C和D反演的横波速度剖面
Fig.4  模型A、B、C、D的含噪声理论数据反演结果
a1,b1,c1,d1—分别为模型A、B、C和D反演所得频散曲线;a2,b2,c2,d2—分别为模型A、B、C和D反演的横波速度剖面
Fig.5  模型C多模式数据反演结果
a—反演所得频散曲线;b—反演的横波速度剖面
参数 真实值 基阶数据 多模数据
反演均值 相对误差/% 标准差 反演均值 相对误差/% 标准差
vs1/(m·s-1) 200 197.78 1.11% 9.25 200.18 0.09% 9.75
vs2/(m·s-1) 160 161.15 0.72% 4.52 158.98 0.64% 4.60
vs3/(m·s-1) 300 286.04 4.65% 32.13 308.08 2.93% 21.04
vs4/(m·s-1) 400 397.61 0.60% 13.58 393.26 1.68% 15.64
H1/m 2 1.97 1.57% 0.17 1.99 0.70% 0.23
H2/m 4 3.86 3.58% 0.43 3.99 0.28% 0.30
H3/m 6 5.62 6.28% 1.09 6.08 1.38% 0.43
Table 3  模型C基阶数据和多模式数据反演结果
Fig.6  SCA与PSO在无噪声模型D中反演收敛过程对比
a—放大前的收敛曲线对比;b—放大后的收敛曲线对比
参数 真实值 SCA PSO
反演均值 相对误差/% 标准差 反演均值 相对误差/% 标准差
vs1/(m·s-1) 150 150.58 0.39% 1.03 148.06 1.29% 9.91
vs2/(m·s-1) 250 252.30 0.92% 4.25 242.06 3.18% 23.34
vs3/(m·s-1) 200 199.81 0.09% 3.94 176.28 11.86% 37.69
vs4/(m·s-1) 400 400.90 0.23% 4.80 374.89 6.28% 27.63
H1/m 2 2.03 1.41% 0.07 1.93 3.5% 0.38
H2/m 4 3.93 1.78% 0.14 3.72 6.86% 0.97
H3/m 6 6.09 1.45% 0.23 4.07 32.14% 2.03
Table 4  SCA和PSO反演效果对比
Fig.7  Arnarb?lidi地区地震数据(a)与频散能量图(b)[29]
文献估计层厚 文献S波速度 S波速度搜索范围 厚度搜索范围
/m /(m·s-1) /(m·s-1) /m
0.8 78 60~90 0.1~1.5
0.5 80 70~100 0.1~1.5
0.7 92 80~110 0.1~1.5
1.2 111 100~150 0.5~2.0
1.9 141 120~200 0.5~2.0
3.0 184 150~250 2.0~4.0
4.7 230 200~300 3.0~5.5
7.5 277 250~350 6.0~9.0
5.2 350 300~400 4.0~6.0
350 320~450
Table 5  Arnarb?lidi地区前人[29]反演模型参数以及搜索范围[30]
Fig.8  Arnarb?lidi地区瑞雷波相速度反演结果
a—反演所得频散曲线;b—最小目标函数值随迭代次数变化情况;c—反演的横波速度剖面
Fig.9  怀俄明地区地震数据(a)与频散能量(b)[32]
层数 vs/(m·s-1) h/m 泊松比 ρ/(g·cm-3)
1 100~300 1~5 0.38 2.0
2 100~400 1~5 0.38 2.0
3 100~600 1~5 0.35 2.0
4 200~600 1~5 0.35 2.0
5 200~800 均匀半空间 0.30 2.0
Table 6  怀俄明地区前人[32]反演模型参数及搜索范围
Fig.10  怀俄明地区瑞利波相速度反演结果
a—反演所得频散曲线;b—最小目标函数值随迭代次数变化情况;c—测井数据与反演横波速度剖面对比
[1] 王光文, 王海燕, 李洪强, 等. 面波勘探技术的研究现状及进展[J]. 地球科学前沿, 2019, 9(9):799-815.
[1] Wang G W, Wang H Y, Li H Q, et al. Research status and progress of surface wave exploration technology[J]. Frontiers of Earth Science, 2019, 9(9):799-815.
[2] 伍敦仕, 孙成禹, 林美言. 基于互相关相移的主动源地震面波频散成像方法[J]. 地球物理学进展, 2017, 32(4):1693-1700.
[2] Wu D S, Sun C Y, Lin M Y. Activeseismic surface wave dispersion imaging method based on cross-correlation and phase-shifting[J]. Progress in Geophysics, 2017, 32(4):1693-1700.
[3] Dal Moro G, Pipan M, Gabrielli P. Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation[J]. Journal of Applied Geophysics, 2007, 61(1):39-55.
doi: 10.1016/j.jappgeo.2006.04.002
[4] Sun C Y, Wang Y Y, Wu D S, et al. Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm[J]. Applied Geophysics, 2017, 14(4):551-558,622.
doi: 10.1007/s11770-017-0641-x
[5] Dorman J, Ewing M. Numerical inversion of seismic surface wave dispersion data and crust-mantle structure in the New York—Pennsylvania area[J]. Journal of Geophysical Research, 1962, 67(13):5227-5241.
doi: 10.1029/JZ067i013p05227
[6] Gabriels P, Snieder R, Nolet G. In situ measurements of shear-wave velocity in sediments with higher-mode Rayleigh waves[J]. Geophysical Prospecting, 1987, 35(2):187-196.
doi: 10.1111/gpr.1987.35.issue-2
[7] 裴江云, 吴永刚, 刘英杰. 近地表低速带反演[J]. 长春地质学院学报, 1994, 24(3):317-320,326.
[7] Pei J Y, Wu Y G, Liu Y J. Near surface low velocity zone inversion[J]. Journal of Jilin University:Earth Science Edition, 1994, 24(3):317-320,326.
[8] Ganji V, Gucunski N, Nazarian S. Automated inversion procedure for spectral analysis of surface waves[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(8):757-770.
doi: 10.1061/(ASCE)1090-0241(1998)124:8(757)
[9] 宋先海, 肖柏勋, 黄荣荣, 等. 用等厚薄层权重自适应迭代阻尼最小二乘法反演瑞雷波频散曲线[J]. 物探与化探, 2003, 27(3):212-216.
[9] Song X H, Xiao B X, Huang R R, et al. The inversion of dispersion curves using self-adaptively iterative damping least square method by combining equal thinner layers with weighting matrix[J]. Geophysical and Geochemical Exploration, 2003, 27(3):212-216.
[10] Xia J H, Miller R D, Park C B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics, 1999, 64(3):691-700.
doi: 10.1190/1.1444578
[11] 艾东海, 程庆群. 低速软弱夹层二维横波速度结构的OCCAM反演[J]. 工程勘察, 2009, 37(4):87-90.
[11] Ai D H, Cheng Q Q. Estimation of 2D s-wave velocity section with low velocity layers by OCCAM algorithm[J]. Geotechnical Investigation and Surveying, 2009, 37(4):87-90.
[12] Song X H, Gu H M, Liu J P, et al. Estimation of shallow subsurface shear-wave velocity by inverting fundamental and higher-mode Rayleigh waves[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(7):599-607.
doi: 10.1016/j.soildyn.2006.12.003
[13] Dal Moro G, Pipan M, Gabrielli P. Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation[J]. Journal of Applied Geophysics, 2007, 61(1):39-55.
doi: 10.1016/j.jappgeo.2006.04.002
[14] Arai H, Tokimatsu K. S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum[J]. Bulletin of the Seismological Society of America, 2005, 95(5):1766-1778.
doi: 10.1785/0120040243
[15] 石耀霖, 金文. 面波频散反演地球内部构造的遗传算法[J]. 地球物理学报, 1995, 38(2):189-198.
[15] Shi Y L, Jin W. Genetic algorithms inversion of lithospheric structure from surface wave dispersion[J]. Chinese Journal of Geophysics, 1995, 38(2):189-198.
[16] Yamanaka H, Ishida H. Application of genetic algorithms to an inversion of surface-wave dispersion data[J]. Bulletin of the Seismological Society of America, 1996, 86(2):436-444.
doi: 10.1785/BSSA0860020436
[17] 张碧星, 肖柏勋, 杨文杰, 等. 瑞利波勘探中“之”形频散曲线的形成机理及反演研究[J]. 地球物理学报, 2000, 43(4):557-567.
[17] Zhang B X, Xiao B X, Yang W J, et al. Mechanism of Zigzag dispersion curves in Rayleigh exploration and its’inversion study[J]. Chinese Journal of Geophysics, 2000, 43(4):557-567.
[18] Martínez M D, Lana X, Olarte J, et al. Inversion of Rayleigh wave phase and group velocities by simulated annealing[J]. Physics of the Earth and Planetary Interiors, 2000, 122(1-2):3-17.
doi: 10.1016/S0031-9201(00)00183-7
[19] Beaty K S, Schmitt D R, Sacchi M. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure[J]. Geophysical Journal International, 2002, 151(2):622-631.
doi: 10.1046/j.1365-246X.2002.01809.x
[20] Calderón-Macías C, Luke B. Improved parameterization to invert Rayleigh-wave data for shallow profiles containing stiff inclusions[J]. Geophysics, 2007, 72(1):U1-U10.
[21] Pei D H, Louie J N, Pullammanappallil S K. Application of simulated annealing inversion on high-frequency fundamental-mode Rayleigh wave dispersion curves[J]. Geophysics, 2007, 72(5):R77-R85.
[22] Lu Y X, Peng S P, Du W F, et al. Rayleigh wave inversion using heat-bath simulated annealing algorithm[J]. Journal of Applied Geophysics, 2016, 134:267-280.
doi: 10.1016/j.jappgeo.2016.09.008
[23] Song X H, Tang L, Lyu X C, et al. Application of particle swarm optimization to interpret Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 2012, 84:1-13.
doi: 10.1016/j.jappgeo.2012.05.011
[24] 蔡伟, 宋先海, 袁士川, 等. 利用粒子群优化算法快速、稳定反演瑞雷波频散曲线[J]. 石油地球物理勘探, 2018, 53(1):25-34,4-5.
[24] Cai W, Song X H, Yuan S C, et al. Fast and stable Rayleigh-wave dispersion-curve inversion based on particle swarm optimization[J]. Oil Geophysical Prospecting, 2018, 53(1):25-34,4-5.
[25] Mirjalili S. SCA:A sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96:120-133.
doi: 10.1016/j.knosys.2015.12.022
[26] 杨博, 熊章强, 张大洲, 等. 利用自适应混沌遗传粒子群算法反演瑞雷面波频散曲线[J]. 石油地球物理勘探, 2019, 54(6):1217-1227,1172.
[26] Yang B, Xiong Z Q, Zhang D Z, et al. Rayleigh surface-wave dispersion curve inversion based on adaptive chaos genetic particle swarm optimization algorithm[J]. Oil Geophysical Prospecting, 2019, 54(6):1217-1227,1172.
[27] 于东凯, 宋先海, 张学强, 等. 蚱蜢算法在瑞雷波频散曲线反演中的应用[J]. 石油地球物理勘探, 2019, 54(2):288-301,236.
[27] Yu D K, Song X H, Zhang X Q, et al. Rayleigh wave dispersion inversion based on grasshopper optimization algorithm[J]. Oil Geophysical Prospecting, 2019, 54(2):288-301,236.
[28] 高旭, 于静, 李学良, 等. 自适应权重蜻蜓算法及其在瑞雷波频散曲线反演中的应用[J]. 石油地球物理勘探, 2021, 56(4):745-757,671-672.
[28] Gao X, Yu J, Li X L, et al. Rayleigh wave dispersion curve inversion based on adaptive weight dragonfly algorithm[J]. Oil Geophysical Prospecting, 2021, 56(4):745-757,671-672.
[29] Ólafsdóttir E Á. Multichannel analysis of surface waves for assessing soil stiffness[D]. University of Iceland, 2016.
[30] 符健. 基于改进非线性算法的瑞利波多模式频散曲线反演研究[D]. 西安: 长安大学, 2019.
[30] Fu J. Research on multimodal Rayleigh wave dispersion curve inversion based on improved nonlinear algorithms[D]. Xi'an: Chang'an University, 2019.
[31] Xia J H. Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis of surface-wave methods[J]. Journal of Applied Geophysics, 2014, 103:140-151.
doi: 10.1016/j.jappgeo.2014.01.016
[32] 蔡伟, 宋先海, 袁士川, 等. 基于萤火虫和蝙蝠群智能算法的瑞雷波频散曲线反演[J]. 地球物理学报, 2018, 61(6):2409-2420.
doi: 10.6038/cjg2018L0322
[32] Cai W, Song X H, Yuan S C, et al. Inversion of Rayleigh wave dispersion curves based on firefly and bat algorithms[J]. Chinese Journal of Geophysics, 2018, 61(6):2409-2420.
[1] 项诸宝, 张大洲, 朱德兵, 李明智, 熊章强. 不同骨料混凝土模型中瑞利波传播特性研究[J]. 物探与化探, 2023, 47(5): 1226-1235.
[2] 李欣欣, 李江, 刘军, 沈鸿雁. 基于改进相移法的煤田地震瑞利波资料处理[J]. 物探与化探, 2022, 46(6): 1470-1476.
[3] 朱剑兵, 高照奇, 田亚军, 梁兴城. 带有横向约束的全局优化波阻抗反演方法及应用[J]. 物探与化探, 2022, 46(6): 1477-1484.
[4] 孙旭, 计子琦, 杨庆义, 刘博政. 基于改进麻雀搜索算法的瑞利波频散曲线反演[J]. 物探与化探, 2022, 46(5): 1267-1275.
[5] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[6] 栾明龙. 瞬态瑞利波技术在地基强夯质量检测中的应用效果[J]. 物探与化探, 2020, 44(3): 615-625.
[7] 杨道煌, 刘江平, 程飞, 庞凯旋. 超声面波法在混凝土强度检测中的应用研究[J]. 物探与化探, 2020, 44(3): 626-634.
[8] 邵广周, 岳亮, 李远林, 吴华. 被动源瑞利波两道法提取频散曲线的质量控制方法[J]. 物探与化探, 2019, 43(6): 1297-1308.
[9] 吴华, 李庆春, 邵广周. 瑞利波波形反演的发展现状及展望[J]. 物探与化探, 2018, 42(6): 1103-1111.
[10] 邵广周, 董晋, 董兆堂. 利用瑞利波广义S变换探测近地表裂缝[J]. 物探与化探, 2018, 42(2): 398-404.
[11] 栾明龙, 魏红, 林万顺. 瞬态瑞利波技术在工程勘察中的应用[J]. 物探与化探, 2012, 36(5): 878-883.
[12] 周竹生, 谢金伟. 基于模拟退火法的弯曲射线追踪[J]. 物探与化探, 2011, 35(6): 793-797.
[13] 翟佳羽, 赵园园, 安丁酉. 面波频散反演地下层状结构的蚁群算法[J]. 物探与化探, 2010, 34(4): 476-481.
[14] 贾辉, 何正勤, 陈义军, 张辉, 刘国, 孙增伟. 多道瞬态瑞利波法场地数据采集参数实验[J]. 物探与化探, 2010, 34(4): 553-556.
[15] 戴天, 厉隽. 瑞利波法检验客运专线湿陷性黄土地基处理效果[J]. 物探与化探, 2009, 33(5): 603-607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com