Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (3): 631-641    DOI: 10.11720/wtyht.2025.2558
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
砂岩型铀矿勘查多元地学信息三维地质建模技术研究
孙栋华1,2,3(), 陈伟1,2,3, 程莎莎1,2,3, 石连成1,2,3, 张俊伟1,2,3, 祁平1,2,3, 杨玉勤1,2,3
1.核工业航测遥感中心,河北 石家庄 050002
2.河北省航空探测与遥感技术重点实验室,河北石家庄 050002
3.中核集团铀资源地球物理勘查技术中心(重点实验室),河北 石家庄 050002
A 3D geological modeling technology using multivariate geoscience information for exploration of sandstone-type uranium deposits
SUN Dong-Hua1,2,3(), CHEN Wei1,2,3, CHENG Sha-Sha1,2,3, SHI Lian-Cheng1,2,3, ZHANG Jun-Wei1,2,3, QI Ping1,2,3, YANG Yu-Qin1,2,3
1. Airborne Survey and Remote Sensing Center of Nuclear Industry, Shijiazhuang 050002, China
2. Hebei Provincial Key Laboratory of Aerial Detection and Remote Sensing Technology, Shijiazhuang 050002, China
3. CNNC Key Laboratory for Geophysical Exploration Technology Center of Uranium Resource, Shijiazhuang 050002, China
全文: PDF(4419 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

三维地质建模是一种寻找深部矿产的有效技术方法,但在砂岩型铀矿勘查中深部成矿预测方面的应用较少。本文以二连盆地哈达图—赛汉高毕一带为研究对象,融合研究区地质、物探和遥感数据建立了三维地质模型,据此开展了深部成矿预测。针对多元地学信息的特点,提出了一种采用不同深度的隐式建模方法,其中1 000 m以浅主要利用地质、钻探资料和地面电磁法测量结果进行建模,1 000 m以深利用重磁三维联合反演结果进行建模。最终的三维地质模型显示,研究区地层主要有新近系—古近系、下白垩统、二叠系、石炭系和新元古界,岩体主要有花岗岩和中基性岩;已知铀矿周围出现的航放铀含量高场、偏高场与含铀物质的运移、沉积、富集以及断裂构造运动有关。利用成矿条件分析法进行了三维成矿预测,圈定了3处与已知矿床具有类似成矿条件的远景区。本研究为在盆地内航放资料的解释和深部铀矿勘查提供了一种新思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙栋华
陈伟
程莎莎
石连成
张俊伟
祁平
杨玉勤
关键词 多元地学信息三维地质模型哈达图—赛汉高毕一带二连盆地砂岩型铀矿    
Abstract

Three-dimensional (3D) geological modeling is regarded as an effective technical method for locating deep-seated minerals. However, its application in deep metallogenic prediction of sandstone-type uranium deposits remains limited. Focusing on the Hadatu-Saihan Gaobi area in the Erlian Basin, this study developed a 3D geological model for deep metallogenic prediction by integrating geological, geophysical, and remote sensing data. Given the characteristics of multivariate geoscience information, this study proposed a layered 3D implicit modeling method. Specifically, for modeling at depths less than 1 000 m, geological and drilling data, along with ground electromagnetic survey results, were primarily used. In contrast, for modeling at depths exceeding 1 000 m, the results from 3D joint gravity and magnetic inversion were utilized. The resulting 3D geological model reveals that primary strata in the study area include the Neogene-Paleogene, Lower Cretaceous, Permian, Carboniferous, and Neoproterozoic strata, with prominent rock masses comprising granites and intermediate-basic rocks. The elevated and slightly elevated fields of aeroradiometric uranium content around the known uranium deposit are associated with the migration, deposition, and enrichment of uranium-bearing materials, as well as fault-related tectonic movements. Through three-dimensional metallogenic prediction based on metallogenic condition analysis, three metallogenic prospect areas with geological characteristics similar to the known uranium deposit were identified. This study provides a novel philosophy for the interpretation of aeroradiometric data and the exploration of deep uranium deposits in basins.

Key wordsmulti-source geological information    3D geological modeling    Hadatu-Saihan Gaobi area    Erlian basin    sandstone-type uranium deposits
收稿日期: 2023-12-21      修回日期: 2024-08-23      出版日期: 2025-06-20
ZTFLH:  P631  
基金资助:中国核工业地质局项目“内蒙古二连浩特地区1∶5万航空物探调查”(201811)
作者简介: 孙栋华(1982-),男,正高级工程师,主要从事航空电、磁、放、重探测的生产与研究工作。Email:sdh703@126.com
引用本文:   
孙栋华, 陈伟, 程莎莎, 石连成, 张俊伟, 祁平, 杨玉勤. 砂岩型铀矿勘查多元地学信息三维地质建模技术研究[J]. 物探与化探, 2025, 49(3): 631-641.
SUN Dong-Hua, CHEN Wei, CHENG Sha-Sha, SHI Lian-Cheng, ZHANG Jun-Wei, QI Ping, YANG Yu-Qin. A 3D geological modeling technology using multivariate geoscience information for exploration of sandstone-type uranium deposits. Geophysical and Geochemical Exploration, 2025, 49(3): 631-641.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.2558      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I3/631
Fig.1  研究区以往工作位置
1—地质剖面;2—地震剖面;3—可控源音频大地电磁测量剖面;4—钻孔;5—铀矿床;6—居民点
Fig.2  研究区三维地质建模结果(z轴拉伸10倍,下同)
a—初步三维地质模型;b—最终三维地质模型
Fig.3  航磁正演模拟逐步逼近过程示意
a—实测结果;b、c—经不断调整后的中间正演结果;d—最终正演结果
Fig.4  重磁三维联合反演结果
a—密度;b—磁化率
Fig.5  主要地质层(体)三维可视化示意
Fig.6  航放测量结果与三维地质模型立体图
Fig.7  研究区三维成矿预测结果
[1] 张金带. 我国砂岩型铀矿成矿理论的创新和发展[J]. 铀矿地质, 2016, 32(6):321-332.
[1] Zhang J D. Innovation and development of metallogenic theory for sandstone type uranium deposit in China[J]. Uranium Geology, 2016, 32(6):321-332.
[2] 张金带, 徐高中, 陈安平, 等. 我国可地浸砂岩型铀矿成矿模式初步探讨[J]. 铀矿地质, 2005, 21(3):139-145.
[2] Zhang J D, Xu G Z, Chen A P, et al. Preliminary discussion on uranium metallogenic models of China's in situ leachable sandstone-type uranium deposits[J]. Uranium Geology, 2005, 21(3):139-145.
[3] 张金带, 徐高中, 林锦荣, 等. 中国北方6种新的砂岩型铀矿对铀资源潜力的提示[J]. 中国地质, 2010, 37(5):1434-1449.
[3] Zhang J D, Xu G Z, Lin J R, et al. The implication of six kinds of new sandstone-type uranium deposits to uranium resources potential in North China[J]. Geology in China, 2010, 37(5):1434-1449.
[4] 陈戴生, 李胜祥, 蔡煜琦. 我国中新生代盆地砂岩型铀矿研究现状及发展方向的探讨[J]. 沉积学报, 2003, 21(1):113-117.
[4] Chen D S, Li S X, Cai Y Q. A discussion on research situation and development direction of sandstone-type uranium deposits in the Meso-Cenozoic Basin of China[J]. Acta Sedimentologica Sinica, 2003, 21(1):113-117.
[5] 苗培森, 李建国, 汤超, 等. 中国北方中新生代盆地深部砂岩铀矿成矿条件与找矿方向[J]. 地质通报, 2017, 36(10):1830-1840.
[5] Miao P S, Li J G, Tang C, et al. Metallogenic condition and prospecting orientation for deep sandstone-hosted uranium deposits in Mesozoic-Cenozoic Basin of North China[J]. Geological Bulletin of China, 2017, 36(10):1830-1840.
[6] 封志兵, 聂逢君, 宁媛丽, 等. 盆地内部砂岩型铀矿找矿技术的设计与探讨[J]. 地质学报, 2022, 96(6):2217-2229.
[6] Feng Z B, Nie F J, Ning Y L, et al. Discussion and design of exploration technology for sandstone-type uranium deposits in the interior of the sedimentary basins[J]. Acta Geologica Sinica, 2022, 96(6):2217-2229.
[7] 袁峰, 张明明, 李晓晖, 等. 成矿预测:从二维到三维[J]. 岩石学报, 2019, 35(12):3863-3874.
[7] Yuan F, Zhang M M, Li X H, et al. Prospectivity modeling:From twodimension to three-dimension[J]. Acta Petrologica Sinica, 2019, 35(12):3863-3874.
doi: 10.18654/1000-0569/2019.12.18
[8] 李青元, 张洛宜, 曹代勇, 等. 三维地质建模的用途、现状、问题、趋势与建议[J]. 地质与勘探, 2016, 52(4):759-767.
[8] Li Q Y, Zhang L Y, Cao D Y, et al. Usage,status,problems,trends and suggestions of 3D geological modeling[J]. Geology and Exploration, 2016, 52(4):759-767.
[9] 陈应军, 严加永. 澳大利亚三维地质填图进展与实例[J]. 地质与勘探, 2014, 50(5):884-892.
[9] Chen Y J, Yan J Y. Progress and examples of three-dimensional geological mapping in Australia[J]. Geology and Exploration, 2014, 50(5):884-892.
[10] 何静, 何晗晗, 郑桂森, 等. 北京五环城区浅部沉积层的三维地质结构建模[J]. 中国地质, 2019, 46(2):244-254.
[10] He J, He H H, Zheng G S, et al. 3D geological modelling of superficial deposits in Beijing City[J]. Geology in China, 2019, 46(2):244-254.
[11] 李鹏, 罗玉钦, 田有, 等. 深部地质资源地球物理探测技术研究发展[J]. 地球物理学进展, 2021, 36(5):2011-2033.
[11] Li P, Luo Y Q, Tian Y, et al. Research progress of geophysical exploration technology for deep geological resources[J]. Progress in Geophysics, 2021, 36(5):2011-2033.
[12] 陈大磊, 王润生, 贺春艳, 等. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1):70-77.
[12] Chen D L, Wang R S, He C Y, et al. Application of integrated geophysical exploration in deep spatial structures:A case study of Jiaodong gold ore concentration area[J]. Geophysical and Geochemical Exploration, 2022, 46(1):70-77.
[13] 方启春, 罗建群, 朱鹏飞, 等. 邹家山铀矿床2、3号带三维地质模型构建及应用[J]. 东华理工大学学报:自然科学版, 2021, 44(5):433-442.
[13] Fang Q C, Luo J Q, Zhu P F, et al. Construction and application of 3D geological model of No.2 and No.3 belt in Zoujiashan uranium deposit[J]. Journal of East China University of Technology:Natural Science Edition, 2021, 44(5):433-442.
[14] 窦帆帆. 相山火山盆地三维地质建模与成矿预测[D]. 抚州: 东华理工大学, 2018.
[14] Dou F F. Three-dimensional geological modeling and metallogenic prediction of Xiangshan volcanic basin[D]. Fuzhou: East China Institute of Technology, 2018.
[15] 石玉龙. 相山铀矿田邹家山东重点勘查区三维地质建模与分析[D]. 抚州: 东华理工大学, 2016.
[15] Shi Y L. Three-dimensional geological modeling and analysis of Zoujia Shandong key exploration area in Xiangshan uranium ore field[D]. Fuzhou: East China Institute of Technology, 2016.
[16] 周邓. 基于3Dmine的邹家山铀矿床三维地质模型的构建——以3号带为例[D]. 抚州: 东华理工大学, 2016.
[16] Zhou D. Construction of 3D geological model of Zoujiashan uranium deposit based on 3D mine—Taking No.3 belt as an example[D]. Fuzhou: East China Institute of Technology, 2016.
[17] 郭红卫. 江西省居隆庵铀矿床三维地质建模及资源量估算[D]. 北京: 中国地质大学(北京), 2016.
[17] Guo H W. Three-dimensional geological modeling and resource estimation of Julongan uranium deposit in Jiangxi Province[D]. Beijing: China University of Geosciences(Beijing), 2016.
[18] 侯曼青, 吴志春, 郭福生, 等. 江西乐安邹家山—居隆庵地区三维地质模型的构建[J]. 地质学刊, 2016, 40(1):118-124.
[18] Hou M Q, Wu Z C, Guo F S, et al. Establishment of a three-dimensional geological model of the Zoujiashan-Julong'an area in Le'an of Jiangxi Province[J]. Journal of Geology, 2016, 40(1):118-124.
[19] 张洋洋. 邹家山铀矿床三维地质建模[D]. 抚州: 东华理工大学, 2015.
[19] Zhang Y Y. 3D geological modeling of Zoujiashan uranium deposit[D]. Fuzhou: East China Institute of Technology, 2015.
[20] 俞嘉嘉, 孙远强, 周万蓬, 等. 广东省仁化县书楼丘铀矿床三维地质建模及成矿预测[J]. 地质与勘探, 2021, 57(2):305-314.
[20] Yu J J, Sun Y Q, Zhou W P, et al. 3D geological modeling and metallogenic prediction of the Shulouqiu uranium deposit in Renhua County,Guangdong Province[J]. Geology and Exploration, 2021, 57(2):305-314.
[21] 范文遥, 曹梦雪, 路来君. 基于GOCAD软件的三维地质建模可视化过程[J]. 科学技术与工程, 2020, 20(24):9771-9778.
[21] Fan W Y, Cao M X, Lu L J. Visualization process of 3D geological modeling based on GOCAD software[J]. Science Technology and Engineering, 2020, 20(24):9771-9778.
[22] 张天福, 张云, 程先钰, 等. 鄂尔多斯盆地北部东胜地区侏罗系—白垩系钻孔数据库与三维地质模型[J]. 中国地质, 2020, 47(S1):220-245.
[22] Zhang T F, Zhang Y, Cheng X Y, et al. Borehole databases and 3D geological model of Jurassic-cretaceous strata in Dongsheng area,North Odors Basin[J]. Geology in China, 2020, 47(S1):220-245.
[23] 张云, 张天福, 孙立新, 等. 鄂尔多斯盆地南缘黄陵地区煤铀兼探钻孔数据集成与三维地质模型构建[J]. 中国地质, 2020, 47(S1):231-254.
[23] Zhang Y, Zhang T F, Sun L X, et al. Integration of borehole data and 3D geological modeling of the Huangling area on the southern margin of the Ordos Basin based on coal-uranium joint exploration[J]. Geology in China, 2020, 47(S1):231-254.
[24] 马宁. 基于钻孔大数据的鄂尔多斯盆地东北缘砂岩型铀矿三维地质成矿分析[D]. 长春: 吉林大学, 2020.
[24] Ma N. Three-dimensional geological and metallogenic analysis of sandstone-type uranium deposits in the northeastern margin of Ordos Basin based on drilling big data[D]. Changchun: Jilin University, 2020.
[25] 张浩浩, 李旭. 蒙其古尔铀矿床三维地质模型构建及应用[J]. 铀矿地质, 2021, 37(3):519-527.
[25] Zhang H H, Li X. Construction and application of three-dimensional geological model of Menqigur uranium deposit[J]. Uranium Geology, 2021, 37(3):519-527.
[26] 齐建全, 张江旭, 刘悦. 数字地质调查系统在某铀矿床资源量估算和矿体三维建模上的应用[J]. 铀矿地质, 2019, 35(6):373-377.
[26] Qi J Q, Zhang J X, Liu Y. The application of digital geological survey system in resource estimation for uranium deposit and 3D orebody modeling[J]. Uranium Geology, 2019, 35(6):373-377.
[27] 陈振振. 基于多元地学信息的三维地质建模及综合演示系统[D]. 长春: 吉林大学, 2016.
[27] Chen Z Z. Three-dimensional geological modeling and comprehensive demonstration system based on multivariate geoscience information[D]. Changchun: Jilin University, 2016.
[28] 李瑞喜, 王功文, 张寿庭, 等. 地学信息三维定量化提取与集成——以河南栾川钼矿区为例[J]. 地质通报, 2014, 33(6):883-893.
[28] Li R X, Wang G W, Zhang S T, et al. Three dimensional quantitative extraction and integration for geosciences information:A case study of the Luanchuan Mo ore district[J]. Geological Bulletin of China, 2014, 33(6):883-893.
[29] 郭甲腾, 刘寅贺, 韩英夫, 等. 基于机器学习的钻孔数据隐式三维地质建模方法[J]. 东北大学学报:自然科学版, 2019, 40(9):1337-1342.
[29] Guo J T, Liu Y H, Han Y F, et al. Implicit 3D geological modeling method for borehole data based on machine learning[J]. Journal of Northeastern University:Natural Science Edition, 2019, 40(9):1337-1342.
[30] 吴晓贵, 秦纪华, 胡林朝, 等. 基于GeoModeller的新疆阿舍勒铜锌矿三维地质模型及地质空间信息解译[J]. 矿产与地质, 2020, 34(4):826-831.
[30] Wu X G, Qin J H, Hu L C, et al. 3D geological model and geospatial information interpretation on the basis of GeoModeller for Ashele Cu-Zn deposit,Xinjiang[J]. Mineral Resources and Geology, 2020, 34(4):826-831.
[31] 丁文祥. 基于多源地学信息约束的繁昌盆地重磁联合反演及三维地质建模研究[D]. 合肥: 合肥工业大学, 2019.
[31] Ding W X. Study on combined gravity and magnetic inversion and three-dimensional geological modeling of Fanchang Basin based on multi-source geological information constraints[D]. Hefei: Hefei University of Technology, 2019.
[32] Bosch M, McGaughey J. Joint inversion of gravity and magnetic data under lithologic constraints[J]. The Leading Edge, 2001, 20(8):877-881.
[33] Joulidehsar F, Moradzadeh A, Doulati A F. An improved 3D joint inversion method of potential field data using cross-gradient constraint and LSQR method[J]. Pure and Applied Geophysics, 2018, 175(12):4389-4409.
[34] Darijani M, Farquharson C G, Lelièvre P G. Joint and constrained inversion of magnetic and gravity data:A case history from the McArthur River area,Canada[J]. Geophysics, 2021, 86(2):B79-B95.
[35] 祁光, 吕庆田, 严加永, 等. 基于先验信息约束的三维地质建模:以庐枞矿集区为例[J]. 地质学报, 2014, 88(4):466-477.
[35] Qi G, Lü Q T, Yan J Y, et al. 3D geological modeling of Luzong ore district based on priori information constrained[J]. Acta Geologica Sinica, 2014, 88(4):466-477.
[36] 孙栋华, 江民忠, 陈江源, 等. 鄂尔多斯盆地西南部多元地学特征及其找铀意义[J]. 铀矿地质, 2020, 36(4):293-301.
[36] Sun D H, Jiang M Z, Chen J Y, et al. The characteristics of multi-source geo-information and its significance to uranium exploration in the southwest of Ordos Basin[J]. Uranium Geology, 2020, 36(4):293-301.
[37] 石连成, 张翔, 杨玉勤, 等. 二连盆地哈达图铀矿床航磁航放特征及找矿意义[J]. 地质论评, 2021, 67(S1):187-188.
[37] Shi L C, Zhang X, Yang Y Q, et al. Airborne magnetic and radiometric characteristics and ore-prospecting significance of Hadatu Uranium deposit,Erlian Basin[J]. Geological Review, 2021, 67(S1):187-188.
[38] 李怀渊, 江民忠, 陈国胜, 等. 我国航空放射性测量进展及发展方向[J]. 物探与化探, 2018, 42(4):645-652.
[38] Li H Y, Jiang M Z, Chen G S, et al. The brilliant achievements and technological innovation of airborne radioactivity survey in China[J]. Geophysical and Geochemical Exploration, 2018, 42(4):645-652.
[39] 刘波. 二连盆地巴赛齐含铀古河谷构造建造与铀成矿模式研究[D]. 长春: 吉林大学, 2018.
[39] Liu B. Study on structural construction and uranium metallogenic model of uranium-bearing ancient valley in Basaiqi,Erlian Basin[D]. Changchun: Jilin University, 2018.
[40] 陈建平, 于淼, 于萍萍, 等. 重点成矿带大中比例尺三维地质建模方法与实践[J]. 地质学报, 2014, 88(6):1187-1195.
[40] Chen J P, Yu M, Yu P P, et al. Method and practice of 3D geological modeling at key metallogenic belt with large and medium scale[J]. Acta Geologica Sinica, 2014, 88(6):1187-1195.
[41] 韩铁映. 博乐市四台海泉铅锌矿三维地质建模及成矿地质条件分析[D]. 乌鲁木齐: 新疆大学, 2021.
[41] Han T Y. Three-dimensional geological modeling and analysis of metallogenic geological conditions of Sitai Haiquan lead-zinc mine in Bole City[D]. Urumqi: Xinjiang University, 2021.
[42] 向杰, 陈建平, 胡彬, 等. 基于三维地质—地球物理模型的三维成矿预测——以安徽铜陵矿集区为例[J]. 地球科学进展, 2016, 31(6):603-614.
doi: 10.11867/j.issn.1001-8166.2016.06.0603.
[42] Xiang J, Chen J P, Hu B, et al. 3D metallogenic prediction based on 3D geological-geophysical model:A case study in Tongling mineral district of Anhui[J]. Advances in Earth Science, 2016, 31(6):603-614.
doi: 10.11867/j.issn.1001-8166.2016.06.0603.
[43] 向中林. 矿区三维地质建模方法研究及深部综合信息找矿预测[D]. 焦作: 河南理工大学, 2019.
[43] Xiang Z L. Study on three-dimensional geological modeling method of mining area and deep comprehensive information prospecting prediction[D]. Jiaozuo: Henan Polytechnic University, 2019.
[44] 付光明. 基于机器学习的三维成矿预测研究——以赣东北朱溪钨矿为例[D]. 抚州: 东华理工大学, 2021.
[44] Fu G M. Research on 3D metallogenic prediction based on machine learning—Taking Zhuxi tungsten mine in northeast Jiangxi as an example[D]. Fuzhou: East China Institute of Technology, 2021.
[45] 耿瑞瑞. 鹿井铀矿床深部和外围三维成矿预测研究[D]. 北京: 核工业北京地质研究院, 2021.
[45] Geng R R. Study on three-dimensional metallogenic prediction of Lujing uranium deposit in depth and periphery[D]. Beijing: Beijing Geological Research Institute of Nuclear Industry, 2021.
[46] 吕永华, 康世虎, 刘武生, 等. 二连盆地哈达图铀矿床关键控矿要素与成矿模式研究[J]. 铀矿地质, 2021, 37(4):584-592.
[46] Lyu Y H, Kang S H, Liu W S, et al. Study on key ore-controlling factors and metallogenic model of hadadu uranium deposit in Erlian Basin[J]. Uranium Geology, 2021, 37(4):584-592.
[47] 徐力群, 张国琛, 马泽锴. 土石堤坝隐患探测综合物探技术发展综述[J]. 地球物理学进展, 2022, 37(4):1769-1779.
[47] Xu L Q, Zhang G C, Ma Z K. Development of comprehensive geophysical prospecting technology for hidden danger detection of earth rock dams[J]. Progress in Geophysics, 2022, 37(4):1769-1779.
[1] 陈念楠, 李满根, 宋志杰, 关宝文, 段建兵, 李西得, 刘武生, 范鹏飞, 刘颖. 二连盆地塔北凹陷反转构造特征与砂岩型铀矿之间的关系[J]. 物探与化探, 2025, 49(1): 22-31.
[2] 胡英才, 王瑞廷, 李貅. 激电效应对AMT正演的影响及其在砂岩型铀矿中的数值模拟[J]. 物探与化探, 2024, 48(4): 1006-1017.
[3] 许第桥, 李茂. 二连盆地宽频大地电磁法数据精细反演处理研究——以满都拉图地区的数据为例[J]. 物探与化探, 2023, 47(4): 994-1001.
[4] 陈念楠, 李满根, 关宝文, 宋志杰, 段建兵, 李西得, 刘武生, 刘颖, 范鹏飞. 二连盆地塔北凹陷西部早白垩世断—坳发育特征研究[J]. 物探与化探, 2022, 46(5): 1149-1156.
[5] 喻翔, 汪硕, 胡英才, 段书新. 二连盆地北部玄武岩覆盖区电性结构与铀成矿环境研究[J]. 物探与化探, 2022, 46(5): 1157-1166.
[6] 伍显红, 许第桥, 李茂. 宽频大地电磁法在二连盆地铀矿资源评价中的试验应用[J]. 物探与化探, 2022, 46(4): 830-837.
[7] 封志兵, 聂冰锋, 聂逢君, 江丽, 夏菲, 李满根, 严兆彬, 何剑锋, 程若丹. 地球物理方法在砂岩型铀矿勘查中的应用进展[J]. 物探与化探, 2021, 45(5): 1179-1188.
[8] 黄笑, 余弘龙, 江丽, 王殿学, 周文博, 马振宇, 张亮亮, 唐国龙. 钍归一化法在松辽盆地开鲁坳陷大林地区地面伽马能谱资料处理中的应用研究[J]. 物探与化探, 2021, 45(2): 316-322.
[9] 杨玉勤, 张翔, 石连成, 邓德伟. 砂岩型铀矿航磁微弱异常提取方法[J]. 物探与化探, 2021, 45(1): 29-36.
[10] 梁建刚, 杨为民, 孙大鹏, 匡海阳. 二维地震勘探在大庆长垣南端砂岩型铀矿勘查中的应用[J]. 物探与化探, 2020, 44(6): 1322-1328.
[11] 吴曲波, 曹成寅, 李子伟. 准噶尔盆地五彩湾地区砂岩型铀矿地震勘探技术[J]. 物探与化探, 2018, 42(6): 1134-1143.
[12] 吴曲波, 李子伟, 潘自强, 曹成寅, 乔宝平. 砂岩型铀矿地震勘探技术应用现状与发展[J]. 物探与化探, 2017, 41(4): 648-655.
[13] 赵宁博, 付锦, 刘涛, 张东辉. 地形对砂岩型铀矿氡气测量的干扰作用及其修正方法[J]. 物探与化探, 2017, 41(4): 667-671.
[14] 徐善法, 刘汉彬, 王玮, 张必敏, 姚文生. 深穿透地球化学方法在十红滩砂岩型铀矿中的试验研究[J]. 物探与化探, 2017, 41(2): 189-193.
[15] 吴曲波, 曹成寅, 潘自强, 李子伟, 乔宝平. 锤击小折射法地表调查的试验效果[J]. 物探与化探, 2016, 40(2): 380-384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com