Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (5): 1198-1205    DOI: 10.11720/wtyht.2023.1536
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
面波信息约束的初至波走时层析反演方法
张利振(), 孙成禹(), 王志农, 李世中, 焦峻峰, 颜廷容
中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
First-arrival wave travel time-based tomography inversion with surface wave information as constraints
ZHANG Li-Zhen(), SUN Cheng-Yu(), WANG Zhi-Nong, LI Shi-Zhong, JIAO Jun-Feng, YAN Ting-Rong
China University of Petroleum(East China),Qingdao 266580,China
全文: PDF(4925 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

射线层析反演过程中,有多种因素都会影响反演效果,如初始模型误差、低速夹层等。传统的初至波走时层析成像方法对模型进行约束或平滑处理,不仅会破坏模型参数与射线之间的相对关系,还会影响反演的稳定性。本文首先测试了不同初始模型下初至波走时层析反演的效果,提出一种面波信息约束的初至波走时层析反演方法。地震数据中面波具有能量强以及频散的特性,通过多道面波分析方法获取面波频散曲线,采用阻尼最小二乘法反演浅地表横波速度,以横波速度结构作为约束,建立纵波初始模型,在此基础上实现带有正则化的初至波走时层析反演。该方法充分利用了地震数据中的面波信息,弥补了层析反演的固有缺陷,提高了浅层结构反演的精度与稳定性,利用实际资料测试了该方法的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张利振
孙成禹
王志农
李世中
焦峻峰
颜廷容
关键词 走时层析正则化初始模型面波频散多道面波分析    
Abstract

The performance of ray-based tomography inversion is affected by many factors,such as initial model error and low-velocity interlayer.The conventional tomography method based on first-arrival wave travel time,which constrains or smooths models,destroys the relative relationship between model parameters and rays and affects the inversion stability.By testing the performance of first-arrival wave travel time-based tomography inversion under different initial models,this study proposed a first-arrival wave travel time-based tomography inversion method with surface wave information as constraints.The process of this method is as follows:(1)Given that surface waves feature high energy and frequency dispersion in seismic data,the surface-wave frequency dispersion curves are obtained through the multi-channel analysis of surface waves;(2)Using the damped least squares method,the shallow-surface shear wave (S-wave) velocities are determined through inversion;(3)With the S-wave velocity structure as the constraint,the initial compressional wave (P-wave) model is established,and accordingly,the first-arrival wave travel time-based tomography inversion that considers regularization is achieved.This method improves the accuracy and stability of shallow structure inversion by fully utilizing the surface wave information in seismic data to counteract the inherent defects of tomography inversion.The effectiveness of this method has been verified using actual data.

Key wordstravel-time tomography    regularization    initial model    surface wave dispersion    multi-channel analysis of surface waves
收稿日期: 2022-12-10      修回日期: 2023-08-08      出版日期: 2023-10-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目“基于石油勘探面波与P-导波的近地表纵横波速度一体化反演”(42174140)
通讯作者: 孙成禹
作者简介: 张利振(1999-),男,硕士研究生,主要从事初至波层析方面的研究工作。Email:1753549195@qq.com
引用本文:   
张利振, 孙成禹, 王志农, 李世中, 焦峻峰, 颜廷容. 面波信息约束的初至波走时层析反演方法[J]. 物探与化探, 2023, 47(5): 1198-1205.
ZHANG Li-Zhen, SUN Cheng-Yu, WANG Zhi-Nong, LI Shi-Zhong, JIAO Jun-Feng, YAN Ting-Rong. First-arrival wave travel time-based tomography inversion with surface wave information as constraints. Geophysical and Geochemical Exploration, 2023, 47(5): 1198-1205.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1536      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I5/1198
层号 横波速度
/(m·s-1)
纵波速度
/(m·s-1)
泊松比 密度
/(g·cm-3)
1 300~410 800~1100 0.42 2.0
2 340 800 0.39 2.0
3 618 1200 0.32 2.0
4 740 1500 0.34 2.0
Table 1  模型参数
Fig.1  观测系统示意
Fig.2  初至波层析正演
a—理论模型;b—走时场;c—射线路径
Fig.3  递增初始模型反演
a—递增初始模型;b—递增初始模型层析反演结果;c—层状初始模型;d—层状初始模型层析反演结果
Fig.4  抽道速度对比
a—递增初始模型层析反演速度对比; b—层状初始模型层析反演速度对比
Fig.5  面波数据处理
a—面波记录;b—频散曲线;c—反演横波速度;d—拟合程度对比
Fig.6  面波约束层析反演
a—横波速度模型;b—纵波初始模型;c—面波约束层析反演结果; d—抽道速度对比
Fig.7  实际资料单炮地震记录
Fig.8  实际资料速度剖面
a—MASW反演横波速度剖面;b—层析反演纵波速度剖面;c—约束层析反演纵波速度剖面
[1] 沈鸿雁, 王鑫, 李欣欣. 近地表结构调查及参数反演综述[J]. 石油物探, 2019, 58(4):471-485.
doi: 10.3969/j.issn.1000-1441.2019.04.001
[1] Shen H Y, Wang X, Li X X. Near-surface structure survey and parameter inversion review[J]. Geophysical Prospecting for Petroleum, 2019, 58(4):471-485.
[2] Levin F K. Anatomy of diving waves[J]. Geophysics, 2012, 61(5):1417-1424.
doi: 10.1190/1.1444066
[3] Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems[M]. Berlin: Springer Science and Business Media, 1996.
[4] 刘玉柱, 董良国, 夏建军. 初至波走时层析成像中的正则化方法[J]. 石油地球物理勘探, 2007, 42(6):682-685,698.
[4] Liu Y Z, Dong L G, Xia J J. Regularization method in first arrival wave tomography[J]. Oil Geophysical Prospecting, 2007, 42(6):682-685,698.
[5] 李辉, 王华忠, 张兵. 层析反演中的正则化方法研究[J]. 石油物探, 2015, 54(5):569-581.
doi: 10.3969/j.issn.1000-1441.2015.05.010
[5] Li H, Wang H Z, Zhang B. The study of regularization in tomography[J]. Geophysical Prospecting for Petroleum, 2015, 54(5):569-581.
doi: 10.3969/j.issn.1000-1441.2015.05.010
[6] 张军华, 吕宁, 田连玉, 等. 地震资料去噪方法、技术综合评述[J]. 地球物理学进展, 2005, 20(4):1083-1091.
[6] Zhang J H, Lyu N, Tian L Y, et al. An overview of the methods and techniques for seismic data noise attenuation[J]. Progress in Geophysics, 2005, 20(4):1083-1091.
[7] 毕云云, 汪金菊, 徐小红, 等. 基于离散曲波变换字典和二维局部离散余弦变换字典组合的面波压制[J]. 石油物探, 2017, 56(2):222-231.
doi: 10.3969/j.issn.1000-1441.2017.02.009
[7] Bi Y Y, Wang J J, Xu X H, et al. Ground roll attenuation based on the combination of discrete curvelet transform dictionary and two-dimensional local discrete cosine transform dictionary[J]. Geophysical Prospecting for Petroleum, 2017, 56(2):222-231.
doi: 10.3969/j.issn.1000-1441.2017.02.009
[8] 李继伟, 臧殿光, 刁永波, 等. 自适应相减和Curvelet变换组合压制面波[J]. 石油地球物理勘探, 2020, 55(5):1005-1015.
[8] Li J W, Zang D G, Diao Y B, et al. Adaptive subtraction and Curvelet transforms combine to suppress surface waves[J]. Oil Geophysical Prospecting, 2020, 55(5):1005-1015.
[9] 伍敦仕, 孙成禹, 林美言. 基于频率—速度域多重信号分类的面波高分辨率频散成像方法[J]. 石油物探, 2017, 56(1):141-149.
doi: 10.3969/j.issn.1000-1441.2017.01.016
[9] Wu D S, Sun C Y, Lin M Y. High resolution dispersion imaging of surface waves based on multiple signal classification in frequency-velocity domain[J]. Geophysical Prospecting for Petroleum, 2017, 56(1):141-149.
doi: 10.3969/j.issn.1000-1441.2017.01.016
[10] Stokoe K H, Nazarian S P. Effectiveness of ground improvement from spectral analysis of surface waves[C]// Helsinki:8th European Conference on Soil Mechanics and Foundation Engineering, 1983:91-94.
[11] 刘江平, 侯卫生, 许顺芳. 相邻道瑞雷波法及在防渗墙强度检测中的应用[J]. 人民长江, 2003, 34(2):34-36,56.
[11] Liu J P, Hou W S, Xu S F. Adjacent-channel transient Rayleigh wave method and its application in compression strength test of water-tight wall[J]. Yangtze River, 2003, 34(2):34-36,56.
[12] Xia J, Miller R D, Park C B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave[J]. Geophysics, 1999, 64(3):1390-1395.
[13] 王志农, 孙成禹, 伍敦仕. 基于面波信息的近地表三维横波速度建模[C]// 中国石油学会2019年物探技术研讨会论文集, 2019:1186-1189.
[13] Wang Z N, Sun C Y, Wu D S. Near-surface 3D shear wave velocity modeling based on surface wave information[C]// Chinese Petroleum Society, 2019:1186-1189.
[14] Li H X, et al. Multichannel analysis of surface waves based on short array stacked Correlation gather[J]. Soil Dynamics and Earthquake Engineering, 2021:146.
[15] 邓小娟, 酆少英, 左莹, 等. 利用浅层反射地震资料中的面波与初至波研究剖面浅部结构[J]. 大地测量与地球动力学, 2019, 39(4):425-431.
[15] Deng X J, Feng S Y, Zuo Y, et al. Research on shallow structure using the surface wave and primary wave of shallow reflection seismicdata[J]. Journal of Geodesy and Geodynamics, 2019, 39(4):425-431.
[16] 陈淼, 王志辉, 刘振东, 等. 城市地下空间资源探测:面波与初至波层析成像联合探测济南泉域近地表速度结构[J]. 地球物理学进展, 2022, 37(2):786-796.
[16] Chen M, Wang Z H, Liu Z D, et al. Exploration of urban underground space resources:combined wave and first arrival tomography to detect near surface velocity structure in Jinan spring area[J]. Progress in Geophysics, 2022, 37(2):786-796.
[17] 黄兴国, 孙建国, 孙章庆, 等. 基于复程函方程和改进的快速推进法的复旅行时计算方法[J]. 石油地球物理勘探, 2016, 51(6):1109-1118.
[17] Huang X G, Sun J G, Sun Z Q, et al. Calculation method for multiple travel based on the return function equation and the improved rapid propulsion method[J]. Oil Geophysical Prospecting, 2016, 51(6):1109-1118.
[18] Li S W, Vladimirsky A, Fomel S. First-break traveltime tomography with the double-square-root eikonal equation[J]. Geophysics, 2013, 78(6):U89-U101.
doi: 10.1190/geo2013-0058.1
[19] 邓乐翔. 瑞雷波场正演模拟及频散曲线的提取[D]. 西安: 长安大学, 2010.
[19] Deng L X. Rayleigh wave field simulation modeling and frequency dispersion curves of extraction.[D]. Xi’an: Chang’an University, 2010.
[20] 卢建旗. 多道面波分析方法及其应用研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2013.
[20] Lu J Q. Multi-channel analysis of surface wave and its utility[D]. Harbin: Institute of Engineering Mechanics,China Earthquake Administration, 2013.
[21] 伍敦仕. 基于面波信息的近地表参数反演方法研究[D]. 青岛: 中国石油大学(华东), 2018.
[21] Wu D S. Study on inversion methods of near-surface parameters based on surface-wave information[D]. Qingdao: China University of Petroleum(East China), 2018.
[22] Sun C Y, Wang Y Y, Wu D S, et al. Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm[J]. Applied Geophysics, 2017, 14(4):551-558.
doi: 10.1007/s11770-017-0641-x
[23] 赵东, 王光杰, 王兴泰, 等. 用遗传算法进行瑞利波反演[J]. 物探与化探, 1995, 19(3):178-185.
[23] Zhao D, Wang G J, Wang X T, et al. The application of genetic algorithm to Rayleigh wave inversion[J]. Geophysical and Geochemical Exploration, 1995, 19(3):178-185.
[24] 裴江云, 吴永刚, 刘英杰. 近地表低速带反演[J]. 长春地质学院学报, 1994, 24(3):317-320.
[24] Pei J Y, Wu Y G, Liu Y J. Near-surface low-speed band inversion[J]. Journal of Changchun University of Earth Sciences, 1994, 24(3):317-320.
[25] 林美言. 基于面波信息的近地表品质因子反演方法研究[D]. 青岛: 中国石油大学(华东), 2017.
[25] Lin M Y. Research on inverting quality factor of near surface based on surface waves[D]. Qingdao: China University of Petroleum(East China), 2017.
[26] 沈鸿雁, 李庆春, 严月英, 等. 多道瞬态面波相速度分析[J]. 石油物探, 2016, 55(5):692-702.
doi: 10.3969/j.issn.1000-1441.2016.05.008
[26] Shen H Y, Li Q C, Yan Y Y, et al. Phase velocity analysis of multi-channel transient surface wave[J]. Geophysical Prospecting for Petroleum, 2016, 55(5):692-702.
doi: 10.3969/j.issn.1000-1441.2016.05.008
[27] Fomel S. Shaping regularization in geophysical-estimation problems[J]. Geophysics, 2007, 72(2):R29-R36.
doi: 10.1190/1.2433716
[1] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[2] 张金强. 基于正则化理论的时频分析方法及应用[J]. 物探与化探, 2023, 47(4): 965-974.
[3] 陈晓, 曾志文, 邓居智, 张志勇, 陈辉, 余辉, 王彦国. 基于不等式和Gramian约束的MT和重力正则化联合反演[J]. 物探与化探, 2023, 47(3): 575-583.
[4] 邢文军, 曹思远, 陈思远, 孙耀光. 基于谱反演方法的叠后纵波阻抗反演[J]. 物探与化探, 2023, 47(2): 429-437.
[5] 姚含, 徐海. 基于梯度投影法的全变差正则化全波形反演[J]. 物探与化探, 2022, 46(4): 977-981.
[6] 张莹莹. 带约束的多辐射场源半航空瞬变电磁一维自适应正则化反演方法[J]. 物探与化探, 2022, 46(2): 424-432.
[7] 何可, 郭明, 胡章荣, 易国财, 王仕兴. 半航空瞬变电磁L1范数自适应正则化反演[J]. 物探与化探, 2021, 45(5): 1338-1346.
[8] 赵广学, 阮帅, 吴肃元. 隧道勘探AMT数据二维非线性共轭梯度反演的关键参数探讨[J]. 物探与化探, 2021, 45(2): 480-489.
[9] 刘畅, 李振春, 曲英铭, 徐夷鹏, 赵伟洁. 地震层析成像方法综述[J]. 物探与化探, 2020, 44(2): 227-234.
[10] 郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2): 372-380.
[11] 梁生贤, 王桥, 焦彦杰, 廖国忠, 郭境. LSQR法在位场反演中的分析与评价[J]. 物探与化探, 2019, 43(2): 359-366.
[12] 何涛, 王万银, 黄金明, 张明华, 杨敏. 正则化方法在比值类位场边缘识别方法中的研究[J]. 物探与化探, 2019, 43(2): 308-319.
[13] 吴华, 李庆春, 邵广周. 瑞利波波形反演的发展现状及展望[J]. 物探与化探, 2018, 42(6): 1103-1111.
[14] 蔡杰雄. 基于方位—反射角度道集的高斯束层析速度建模方法及实现[J]. 物探与化探, 2018, 42(5): 977-989.
[15] 俞岱, 何志军, 孙渊, 王颖. 基于波场延拓的反Q滤波方法比较[J]. 物探与化探, 2018, 42(2): 331-338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com