Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (2): 534-544    DOI: 10.11720/wtyht.2024.1046
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
七星关区耕地土壤Ge地球化学特征及其与作物的吸收关系
张宏伟1(), 杨恩林1,2(), 焦树林1, 王贵云1, 杨善进1
1.贵州师范大学 地理与环境科学学院,贵州 贵阳 550025
2.贵州省地质矿产勘查开发局 地矿局117地质大队,贵州 贵阳 550018
Ge in soils of cultivated land in Qixingguan District: Geochemical characteristics and absorption by crops
ZHANG Hong-Wei1(), YANG En-Lin1,2(), JIAO Shu-Lin1, WANG Gui-Yun1, YANG Shan-Jin1
1. School of Geography & Environmental Science, Guizhou Normal University, Guiyang 550025, China
2. No. 117 Geological Team, Guizhou Bureau of Geology and Mineral Exploration and Development, Guiyang 550018, China
全文: PDF(4106 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

掌握耕地土壤Ge含量特征及其与作物的吸收关系,对耕地Ge的开发利用及科学选种具有重要意义。为此,以贵州省七星关区土地质量地球化学调查评价项目数据为基础,统计Ge的地球化学参数,分析该区土壤Ge地球化学特征和作物对Ge的吸收规律。结果显示:七星关区耕地土壤Ge含量在(0.86~2.48)×10-6,平均值1.74×10-6,与全国土壤Ge背景值相当。通过地统计分析,圈定富Ge耕地面积65 853.54 hm2,占全区耕地总面积的47.41%,主要分布于研究区西北和西南部。农作物对土壤Ge的生物吸收系数(Ax)均小于1%,均处于极弱摄取水平。采用相关分析等方法讨论耕地土壤富Ge成因及影响作物吸收Ge的环境因子,得出以下结论:①土壤Ge含量主要受成土母质控制,同时受到风化成土过程的影响,并在七星关区耕地有机质含量丰富和偏酸性的土壤背景下,造成土壤Ge富集;②酸性土壤中,作物对土壤Ge的生物吸收系数(Ax)与pH呈弱负相关关系,而在中—碱性土壤中,作物对土壤Ge的生物吸收系数(Ax)与pH呈正相关关系,即偏酸性土壤是导致作物对Ge生物吸收能力低的原因。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张宏伟
杨恩林
焦树林
王贵云
杨善进
关键词 耕地土壤Ge地球化学特征生物吸收七星关区    
Abstract

Determining the content and absorption by crops of germanium (Ge) in soils of cultivated land holds great significance for the development and utilization of Ge in the land, as well as the scientific seed selection for the land. However, few studies on the Ge element in soils of cultivated land in Qixingguan District have been reported. Based on the data from a project of the geochemical investigation and evaluation of the land quality in the district, this study made statistics of geochemical parameters such as the Ge content and analyzed the geochemical characteristics of Ge in soils and the absorption of Ge by crops. The results show that the soils of cultivated land in Qixingguan District exhibit a Ge content ranging from (0.86~2.48)×10-6 (average: 1.74×10-6), which is equivalent to the background value of Ge in China. Based on the geostatistical analysis, this study determined that Ge-rich cultivated land covers an area of 65 853.54 hm2, accounting for 47.41% of the total cultivated land in the district, and is primarily distributed in the northwestern and southwestern portions. The biological absorption coefficients (Ax) to Ge in soils by crops are all below 1%, suggesting an extremely low absorption level. This study explored the causes of Ge enrichment in the soils and the environmental factors affecting Ge absorption by crops using methods such as correlation analysis, drawing the following conclusions: ① The Ge content in soils is principally governed by soil parent materials, accompanied by the influence of pedogenetic weathering process for soil formation. These factors, coupled with high organic matter content and slightly acidic soil, contribute to the Ge enrichment in the cultivated land of Qixingguan District; ② The correlation between Ax and pH is slightly negative in acidic soils but positive in neutral to alkaline soils, implying that slightly acidic soil reduces the absorption of Ge by crops in the study area.

Key wordssoils in cultivated land    Ge    geochemical characteristics    biological absorption    Qixingguan District
收稿日期: 2023-02-02      修回日期: 2023-08-05      出版日期: 2024-04-20
ZTFLH:  S151  
基金资助:国家自然科学基金项目(42362007);贵州省科技厅基础研究计划(黔科合基础[2017]1406号);贵州省自然资源厅项目(黔地矿耕调[2017]14号)
通讯作者: 杨恩林
作者简介: 张宏伟(1996-),男,硕士研究生,自然地理学专业。Email:354427643@qq.com
引用本文:   
张宏伟, 杨恩林, 焦树林, 王贵云, 杨善进. 七星关区耕地土壤Ge地球化学特征及其与作物的吸收关系[J]. 物探与化探, 2024, 48(2): 534-544.
ZHANG Hong-Wei, YANG En-Lin, JIAO Shu-Lin, WANG Gui-Yun, YANG Shan-Jin. Ge in soils of cultivated land in Qixingguan District: Geochemical characteristics and absorption by crops. Geophysical and Geochemical Exploration, 2024, 48(2): 534-544.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1046      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I2/534
Fig.1  研究区位置(a)、地质背景(b)(据《中国区域地质志·贵州志》[19]修改)、土地利用现状(c)、土壤类型及采样点分布(d)
元素 检测方法 检出限 元素 检测方法 检出限 元素 检测方法 检出限
Ge ICP-MS 0.1 Mo ICP-MS 0.2 Al2O3 ICP-AES 0.02*
As AFS 0.5 Ni ICP-MS 1 TFe2O3 XRF 0.02*
Cd ICP-MS 0.03 P ICP-AES 5 MgO XRF 0.03*
Co ICP-MS 1 Pb ICP-MS 1.5 CaO XRF 0.03*
Cr ICP-AES 0.90 Zn ICP-MS 3 Na2O XRF 0.03*
Cu ICP-MS 1 K2O ICP-AES 0.04* pH ISE 0.10**
Hg AFS 0.0005 SiO2 XRF 0.05* 有机质 VOL 0.1*
Table 1  土壤中各指标分析方法及检出限
指标 最大值 最小值 平均值 标准差 变异系数 中国土壤背景值[30] 贵州土壤背景值[30]
Ge 2.48 0.86 1.74 0.32 0.18 1.7 1.8
As 30.60 3.54 14.10 5.50 0.39 11.2 20.0
Cd 1.15 0.14 0.55 0.20 0.36 0.097 0.659
Co 62.80 6.35 26.60 12.20 0.46 12.7 19.2
Cr 213.0 29.1 115.0 42.0 0.37 61 95.9
Cu 124.0 11.2 55.5 27.4 0.49 22.6 32.0
Hg 320 41 139 61 0.44 65 110
Mo 4.34 0.65 1.92 0.83 0.43 2.0 2.4
Ni 101.0 12.4 48.9 18.0 0.37 26.9 39.1
P 2005 383 1070 383 0.36 520 -
Pb 60.2 18.0 34.5 9.1 0.26 26 35.2
Zn 192.0 41.4 111.0 34.1 0.28 74.2 99.5
K2O 4.04 0.57 1.86 0.82 0.44 1.86 -
SiO2 77.5 40.6 59.1 7.63 0.13 59.9 -
Al2O3 22.00 7.71 14.50 2.53 0.17 6.62 -
TFe2O3 16.40 2.57 8.53 2.99 0.35 2.94 -
MgO 4.11 0.41 1.54 0.86 0.56 0.78 -
CaO 2.34 0.21 0.86 0.50 0.58 1.54 -
Na2O 0.42 0.03 0.20 0.08 0.41 1.02 -
pH 8.07 4.33 6.27 1.08 0.17 6.7 6.2
有机质 81.1 12.3 43.3 13.9 0.32 2.00 42.6
Table 2  研究区耕层土壤地球化学参数统计
Fig.2  研究区土壤Ge地球化学分布特征(a)及富Ge耕地等级划分(b)
Fig.3  作物Ge含量分级
作物 最大值 最小值 平均值 变异系数
玉米 0.0080 0.0020 0.0035 0.0010
四季豆 0.0040 0.0020 0.0028 0.0007
马铃薯 0.0100 0.0020 0.0041 0.0025
萝卜 0.0080 0.0020 0.0040 0.0021
白菜 0.0050 0.0020 0.0026 0.0010
Table 3  不同农作物Ge含量
Fig.4  农作物生物吸收系数(a)及其与土壤Ge的相关性(b)
地层 岩性 样品数 w(Ge)/10-6
清虚洞组(1-2q) 灰色中厚层—块状夹薄层状泥质、钙质白云岩,灰色厚层块状泥晶灰岩、条带状白云质灰岩 2 1.77
娄山关组(3-4O1l) 灰、浅灰色中厚层含燧石结核及条带状白云岩,浅灰、灰白色中厚层值厚层微—细晶白云岩 19 1.77
湄潭组(O1m) 灰绿、黄绿色粉砂质黏土岩,灰色生物灰岩、泥质灰岩、泥灰岩不等比互层 1 1.60
龙马溪组(O3S1l) 黑色炭质页岩,含粉砂质炭质页岩,少量灰至深灰色泥质灰岩,泥质生物屑泥晶灰岩 22 1.79
梁山—茅口组(P1l-m) 浅灰至灰黑色中至厚层块状微晶—泥晶灰岩、生物灰岩、生物屑灰岩及含燧石结核灰岩 18 1.62
峨眉山玄武岩( P1-2em) 灰绿、黄灰色块状拉斑玄武岩、角砾状玄武岩及玄武质火山角砾岩,夹紫灰色凝灰岩 3 1.75
龙潭组(P2l) 灰、黄灰、深灰色中厚层岩屑砂岩、粉砂岩、泥质粉砂岩与炭质黏土岩互层,含煤层 14 1.96
飞仙关组(T1f) 紫红、暗红色薄至厚层黏土岩、灰绿色厚层夹中厚层黏土岩,夹灰绿色厚层砂岩及泥质岩 5 1.78
永宁镇组(T1yn) 灰、深灰色薄至厚层泥晶质灰岩与灰、浅灰色薄至厚层细晶白云岩互层,夹岩溶角砾状白云岩 20 1.71
关岭组(T2g) 深灰、灰色薄至厚层块状细—中晶白云岩,夹少量灰色厚层灰岩、白云质灰岩及角砾状灰岩 10 1.58
自流井组(J1z) 浅灰、灰色中夹薄层细至中粒石英砂岩、紫红色铁质粉砂质黏土岩、灰色厚层泥质岩 1 1.71
Table 4  不同成土母质的土壤Ge平均含量
土壤有机质 土壤pH
等级 丰富
(>40×10-3)
较丰富
((30~40)×10-3)
中等
((20~30)×10-3)
较缺乏
((10~20)×10-3)
酸性
(≤6.5)
中性
(6.5~7.5)
碱性
(>7.5)
Ge含量/10-6 1.81 1.67 1.62 1.59 1.81 1.72 1.54
Table 5  不同土壤性质中Ge含量
Fig.5  土壤Ge含量与CIA(a)和w(SiO2)/w(Ge)(b)散点图
Fig.6  作物生物吸收系数与土壤有机质(a)和pH(b)散点图
指标 As B Cd Co Cr Cu Hg Mo Ni
Ax 0.092 -0.128 0.064 0.055 0.049 -0.137 0.028 0.164 -0.085
指标 P Zn K2O SiO2 Al2O3 TFe2O3 MgO CaO Na2O
Ax 0.073 -0.135 -0.223 -0.103 0.026 -0.018 -0.078 0.348** -0.090
Table 6  作物的生物吸收系数(Ax)与土壤元素相关性分析
[1] Frenzel M, Ketris M P, Gutzmer J. On the geological availability of germanium[J]. Mineralium Deposita, 2014, 49(4):174-186.
[2] 董秋瑶, 赖书雅, 宋超, 等. 南阳盆地东部山区土壤锗分布特征及其影响因素分析[J]. 环境科学, 2022, 43(6):3278-3287.
[2] Dong Q Y, Lai S Y, Song C, et al. Distribution characteristics and influencing factors of germanium in soil in the Easten mountainous area of the Nanyang basin[J]. Environmental Science, 2022, 43(6):3278-3287.
doi: 10.1021/es803179b
[3] 黄少青, 张建强, 张恒利. 东北赋煤区煤中锗元素分布特征及富集控制因素[J]. 煤田地质与勘探, 2018, 46(3):6-10.
[3] Huang S Q, Zhang J Q, Zhang H L. Distribution and controlling factors of enrichment of germanium in coal-bearing region of Northeast China[J]. Coal Geology & Exploration, 2018, 46(3):6-10.
[4] Dobrzyński D, Boguszewska-Czubara A, Sugimori K. Hydrogeochemical and biomedical insights into germanium potential of curative waters:A case study of health resorts in the Sudetes Mountains(Poland)[J]. Environmental Geochemistry and Health, 2018, 40(4):1355-1375.
doi: 10.1007/s10653-017-0061-0 pmid: 29299858
[5] Wada T, Hanyu T, Nozaki K, et al. Antioxidant activity of Ge-132,a synthetic organic germanium,on cultured mammalian cells[J]. Biological and Pharmaceutical Bulletin, 2018, 41(5):749-753.
doi: 10.1248/bpb.b17-00949
[6] Höll R, Kling M, Schroll E. Metallogenesis of germanium—A review[J]. Ore Geology Reviews, 2007, 30(3/4):145-180.
doi: 10.1016/j.oregeorev.2005.07.034
[7] 姬丙艳, 许光, 姚振, 等. 锗的研究进展及开发前景[J]. 中国矿业, 2016, 25(S1):22-24.
[7] Ji B Y, Xu G, Yao Z, et al. The advancement and development prospect of germanium[J]. China Mining Magazine, 2016, 25(S1):22-24.
[8] 齐小芳, 程智慧. 植物对锗的吸收利用及其生理功能研究进展[J]. 中国蔬菜, 2020, 1(8):14-18.
[8] Qi X F, Cheng Z H. Research progress on absorption and utilization of germanium (Ge) and its physiological function in plant[J]. China Vegetables, 2020, 1(8):14-18.
[9] 曾妍妍, 周金龙, 郑勇, 等. 新疆若羌县绿洲区富锗土壤地球化学特征及成因分析[J]. 土壤通报, 2017, 48(5):1082-1086.
[9] Zeng Y Y, Zhou J L, Zheng Y, et al. Geochemical features of germanium-rich soils and its causes in oasis region of Ruoqiang County,Xinjiang[J]. Chinese Journal of Soil Science, 2017, 48(5):1082-1086.
[10] 袁宏, 赵利, 王茂丽, 等. 西藏拉萨至曲水拉萨河沿岸农用地土壤硒锗空间分布与评价[J]. 土壤, 2020, 52(2):427-432.
[10] Yuan H, Zhao L, Wang M L, et al. Spatial distribution and evaluation of selenium and germanium in farmland soils from Lhasa to Qushui along the Lhasa River in Tibet[J]. Soils, 2020, 52(2):427-432.
[11] 余朕朕, 陈博渊, 焦德智, 等. 浙江岱山县土壤耕作层锗分布特征及成因分析[J]. 现代地质, 2021, 35(6):1762-1768.
[11] Yu Z Z, Chen B Y, Jiao D Z, et al. Distribution characteristics and causes of germanium in cultivated soil of Daishan county,Zhejiang Province[J]. Geoscience, 2021, 35(6):1762-1768.
[12] 孙厚云, 孙晓明, 贾凤超, 等. 河北承德锗元素生态地球化学特征及其与道地药材黄芩适生关系[J]. 中国地质, 2020, 47(6):1646-1667.
[12] Sun H Y, Sun X M, Jia F C, et al. The eco-geochemical characteristics of germanium and its relationship with the genuine medicinal material Scutellaria baicalensis in Chengde,Hebei Province[J]. Geology in China, 2020, 47(6):1646-1667.
[13] 段轶仁, 杨忠芳, 杨琼, 等. 广西北部湾地区土壤锗分布特征、影响因素及其生态环境评价[J]. 中国地质, 2020, 47(6):1826-1837.
[13] Duan Y R, Yang Z F, Yang Q, et al. The distribution,influencing factors and ecological environment evaluation of soil germanium in Beibu Gulf of Guangxi Zhuang Autonomous Region[J]. Geology in China, 2020, 47(6):1826-1837.
[14] 赵君, 饶竹, 王鹏, 等. 黑龙江讷河市富锗土壤地球化学特征及影响因素浅析[J]. 岩矿测试, 2022, 41(4):642-651.
[14] Zhao J, Rao Z, Wang P, et al. Geochemical characteristics and influencing factors of germanium-enriched soils in Nehe City,Heilongjiang Province[J]. Rock and Mineral Analysis, 2022, 41(4):642-651.
[15] 李明堂, 张月, 赵晓松. 锗在土壤—水稻系统内的迁移和积累规律[J]. 农业环境科学学报, 2007, 26 (1):126-129.
[15] Li M T, Zhang Y, Zhao X S. Migration and accumulation of germanium within soil-rice systems[J]. Journal of Agro-Environment Science, 2007, 26 (1):126-129.
[16] 李桂珠, 赵丽丽. 金属锗在水稻体内的植物化研究[J]. 安徽农业科学, 2008, 36(22):9434-9435.
[16] Li G Z, Zhao L L. Phytochemistry of germanium metal in rice[J]. Journal of Anhui Agricultural Sciences, 2008, 36(22):9434-9435.
[17] 刘道荣. 浙江常山县表层土壤锗地球化学特征及影响因素[J]. 现代地质, 2020, 34(1):97-103.
[17] Liu D R. Geochemical characteristics and influencing factors of germanium in surface soil of Changshan County,Zhejiang Province[J]. Geoscience, 2020, 34(1):97-103.
[18] 余飞, 贾中民, 李武斌, 等. 锗在土壤—水稻系统的迁移累积及其影响因素[J]. 三峡生态环境监测, 2018, 3(1):66-74.
[18] Yu F, Jia Z M, Li W B, et al. Translocation and accumulation of germanium in paddy soil-rice plant system[J]. Ecology and Environmental Monitoring of Three Gorges, 2018, 3(1):66-74.
[19] 贵州省地质调查院. 中国区域地质志·贵州志[M]. 北京: 地质出版社, 2016.
[19] Guizhou Provincial Institute of Geological Survey. Regional geology of China·Guizhou chronicle[M]. Beijing: Geological Publishing House, 2016.
[20] 贵州省土壤普查办公室. 贵州省土壤[M]. 贵阳: 贵州科技出版社,1994.
[20] Guizhou Provincial Soil Census Office. Soil of Guizhou Province[M]. Guiyang: Guizhou Science and Technology Publishing House,1994.
[21] 中华人民共和国国土资源部. DZ/T 0295—2016土地质量地球化学评价规范[S]. 北京: 地质出版社, 2016.
[21] Ministry of Land and Resources of the People's Republic of China. DZ/T 0295—2016 Specification for geochemical evaluation of land quality[S]. Beijing: Geological Publishing House, 2016.
[22] 中华人民共和国国土资源部. DZ/T 0258—2014多目标区域地球化学调查规范[S]. 北京: 中国标准出版社, 2014.
[22] Ministry of Land and Resources of the People's Republic of China. DZ/T 0258—2014 Specification for multi-target regional geochemical surve[S]. Beijing: China Standard Press, 2014.
[23] 中华人民共和国卫生部. GB/T 5009.151—2003食品中锗的测定[S]. 北京: 中国标准出版社, 2003.
[23] Ministry of Health and Resources of the People's Republic of China. GB/T 5009.151—2003 Determination of germanium in food[S]. Beijing: China Standard Press, 2003.
[24] 刘道荣, 周漪, 侯建国, 等. 大田生产条件下锗在土壤—水稻系统中的迁移累积[J]. 中国土壤与肥料, 2020(3):133-137.
[24] Liu D R, Zhou Y, Hou J G, et al. Translocation and accumulation of germanium in soil-rice system under field conditions[J]. Soil and Fertilizer Sciences in China, 2020(3):133-137.
[25] 李新虎. 土壤地球化学环境对宁夏枸杞品质的制约影响研究[D]. 北京: 中国地质大学(北京), 2007.
[25] Li X H. The restriction and influence study of the soil geochemistry condition for lycium barbarum L[D]. Beijing: China University of Geosciences (Beijing), 2007.
[26] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7):1523-1534.
doi: 10.1016/0016-7037(84)90408-3
[27] 巫锡勇, 凌斯祥, 任勇, 等. 渝东北黑色页岩元素迁移特征及化学风化程度[J]. 地球科学, 2016, 41(2):218-233.
[27] Wu X Y, Ling S X, Ren Y, et al. Elemental migration characteristics and chemical weathering degree of black shale in Northeast Chongqing,China[J]. Earth Science, 2016, 41(2):218-233.
[28] 中国环境监测总站. 中国土壤环境背景值[M]. 北京: 中国环境科学出版社,1990.
[28] China National Environmental Monitoring Station. Background value of soil environment in China[M]. Beijing: China Environmental Science Press,1990.
[29] 魏泽权, 郭宇, 谯文浪. 贵州遵义地区耕地土壤锗元素分布特征与富集机理[J]. 矿产与地质, 2021, 35(5):972-979.
[29] Wei Z Q, Guo Y, Qiao W L. Distribution characteristics and enrichment mechanism of germanium element in arable soils of Zunyi area,Guizhou[J]. Mineral Resources and Geology, 2021, 35(5):972-979.
[30] 张庆华, 苏之良, 罗勇军, 等. 黔东南州富锗土壤地球化学特征及成因分析[J]. 上海国土资源, 2021, 42(2):20-24.
[30] Zhang Q H, Su Z L, Luo Y J, et al. Geochemical features and origin of germanium-rich soilin Qiandongnan prefecture[J]. Shanghai Land & Resources, 2021, 42(2):20-24.
[31] 鲍大忠, 游桂芝, 李丕鹏. 贵州省兴仁市耕地土壤富锗地球化学特征及影响因素浅析[J]. 四川地质学报, 2020, 40(3):500-504,512.
[31] Bao D Z, You G Z, Li P P. Geochemical characteristics and influencing factors of germanium-rich soil in cultivated land in Xingren City,Guizhou Province[J]. Acta Geologica Sichuan, 2020, 40(3):500-504,512.
[32] 游桂芝, 鲍大忠, 李丕鹏. 贵州安龙县耕地土壤富锗含量特征及成因探讨[J]. 贵州大学学报:自然科学版, 2020, 37(5):35-39.
[32] You G Z, Bao D Z, Li P P. Germanium content characteristics and cause of germanium-rich soil in Anlong County,Guizhou Province[J]. Journal of Guizhou University:Natural Sciences, 2020, 37(5):35-39.
[33] 孔祥瑞. 锗的医学地理分布:论“浅井数据”的不可靠性[J]. 国外医学:医学地理分册, 1994(2):49-52.
[33] Kong X R. Medical geographic distribution of germanium:On the unreliability of "Shallow Well Data”[J]. Foreign Medical Sciences:Section of Medgeography, 1994(2):49-52.
[34] 鄢明才, 顾铁新, 迟清华, 等. 中国土壤化学元素丰度与表生地球化学特征[J]. 物探与化探, 1997, 21(3):161-167.
[34] Yan M C, Gu T X, Chi Q H. Abundance and epibiotic geochemical characteristics of soil chemical elements in China[J]. Geophysical and Geochemical Exploration, 1997, 21(3):161-167.
[35] 刘艳娟. 贵州省沿河县土壤及特色农产品硒锌锗调查研究[D]. 贵阳: 贵州大学, 2009.
[35] Liu Y J. Investigation and study of selenium,zinc and germanium in soil and characteristic agricultural products in Yanhe County,Guizhou Province[D]. Guiyang: Guizhou University, 2009.
[36] 鲍丽然, 贾中民, 李瑜, 等. 南川金佛山方竹笋营养安全品质和立地土壤评价[J]. 物探与化探, 2018, 42(5):1089-1094.
[36] Bao L R, Jia Z M, Li Y, et al. Evaluation of nutritional and safe quality of Chimonobambusa utilis bamboo shoots and the surrounding soil in Nanchuan,Chongqing[J]. Geophysical and Geochemical Exploration, 2018, 42(5):1089-1094.
[37] 安永龙, 殷秀兰, 金爱芳, 等. 张家口市北新屯地区蔬菜种植区锗元素富集特征及成因分析[J]. 环境科学, 2022, 32(5):1-21
[37] An Y L, Yin X L, Jin A F, et al. Characteristics and causes of Ge enrichment in vegetable growing areas of Beixintun Town,Zhangjiakou City[J]. Environmental Science, 2022, 32(5):1-21
doi: 10.1021/es970284w
[38] Okoroafor P U, Ogunkunle C O, Heilmeier H, et al. Phytoaccumulation potential of nine plant species for selected nutrients,rare earth elements(REEs),germanium(Ge),and potentially toxic elements(PTEs) in soil[J]. International Journal of Phytoremediation, 2022, 24(12):1310-1320.
doi: 10.1080/15226514.2021.2025207
[39] Wiche O, Heilmeier H. Germanium(Ge) and rare earth element(REE)accumulation in selected energy crops cultivated on two different soils[J]. Minerals Engineering, 2016, 92:208-215.
doi: 10.1016/j.mineng.2016.03.023
[40] 欧阳柬. 蔬菜含锗(Ge)量的初探[J]. 重庆环境科学, 1997(4):38-40.
[40] Ouyang J. A preliminary study on germanium (Ge) content in vegetables[J]. Chongqing Environmental Science, 1997(4):38-40.
[41] 梁帅, 戴慧敏, 赵君, 等. 黑龙江双阳河流域土壤—水稻—人体系统锗的分布特征、迁移转化及影响因素[J]. 物探与化探, 2022, 46(6):1555-1564.
[41] Liang S, Dai H M, Zhao J, et al. Distribution characteristics,migration transformation and influencing factors of Ge in soil-rice system in Shuangyang River Basin,Heilongjiang Province[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1555-1564.
[42] 胡瑞忠, 苏文超, 戚华文, 等. 锗的地球化学、赋存状态和成矿作用[J]. 矿物岩石地球化学通报, 2000, 19(4):215-217.
[42] Hu R Z, Su W C, Qi H W, et al. Geochemistry,occurrence and mineralization of germanium[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2000, 19(4):215-217.
[43] 刘峰. 云南会泽大型铅锌矿床成矿机制及锗的赋存状态[D]. 北京: 中国地质科学院, 2005.
[43] Liu F. The metallogenetic mechanism of the Huize Lead-zine ore deposit and the occurrence of gemanium,Yunnan Province,China[D]. Beijing: Chinese Academy of Geological Sciences, 2009.
[44] 武文, 莫若平, 王志民. 伊敏煤田锗资源赋存特征及地质工作建议[J]. 内蒙古地质, 2002(1):27-30.
[44] Wu W, Mo R P, Wang Z M. Occurrence features and geological work of gemanium resource in Yimin Coalfield,Inner Mongolia[J]. Geology of Inner Mongolia, 2002(1):27-30.
[45] 朱雪莉. 煤中锗的成矿地质条件及分布规律[J]. 图书情报导刊, 2009, 19(32):153-154.
[45] Zhu X L. Talking about the minerogenetic geological conditions and distribution regularities of germanium in coal[J]. Journal of Library and Information Science, 2009, 19(32):153-154.
[46] Négrel P, Ladenberger A, Reimann C, et al. GEMAS:Source,distribution patterns and geochemical behaviour of Ge in agricultural and grazing land soils at European continental scale[J]. Applied Geochemistry, 2016, 72:113-124.
doi: 10.1016/j.apgeochem.2016.07.004
[47] 刘艳, 侯龙鱼, 赵广亮, 等. 锗对植物影响的研究进展[J]. 中国生态农业学报, 2015, 23(8):931-937.
[47] Liu Y, Hou L Y, Zhao G L, et al. Mechanism and application of germanium in plant growth[J]. Chinese Journal of Eco-Agriculture, 2015, 23(8):931-937.
[48] Yang T, Zhu Z, Gao Q, et al. Trace element geochemistry in topsoil from East China[J]. Environmental Earth Sciences, 2010, 60(3):623-631.
doi: 10.1007/s12665-009-0202-6
[49] Kurtz A C, Lugolobi F, Salvucci G. Germanium-silicon as a flow path tracer:Application to the Rio Icacos watershed[J]. Water Resources Research, 2011, 47(6):1-16.
doi: 10.1029/2010WR009138
[50] Qi H W, Hu R Z, Jiang K, et al. Germanium isotopes and Ge/Si fractionation under extreme tropical weathering of basalts from the Hainan Island,South China[J]. Geochimica et Cosmochimica Acta, 2019, 253:249-266.
doi: 10.1016/j.gca.2019.03.022
[51] Yuan Y. Research progress in the effect of physical and chemical properties on heavy metal bioavailability in soil-crop system[J]. Advances in Geosciences, 2014, 4(4):214-223.
doi: 10.12677/AG.2014.44026
[52] 罗友进, 韩国辉, 孙协平, 等. 三峡库区(重庆段)土壤硒分布特征及影响因素[J]. 土壤, 2018, 50(1):131-138.
[52] Luo Y J, Han G H, Sun X P, et al. Distribution of soil selenium in Three Gorges Reservoir Region (Chongqing section) and its influential factors[J]. Soils, 2018, 50(1):131-138.
[53] 李明堂. 锗在土壤—水稻体系内迁移和积累规律的研究[D]. 长春: 吉林农业大学, 2002.
[53] Li M T. Study on the law of translocation and accumulation of germanium in rice plant-soil system[D]. Changchun: Jilin Agricultural University, 2002.
[54] 夏伟, 段碧辉, 王天一, 等. 恩施州咸丰县土壤—水稻系统锗元素迁移转化及影响因素[J]. 西南农业学报, 2021, 34(12):2748-2756.
[54] Xia W, Duan B H, Wang T Y, et al. Germanium transfer and its lnfluencing factors in soil-rice system in Xianfeng County,Enshi Prefecture[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(12):2748-2756.
[1] 梁志强, 李弘. 不同方位各向异性反演技术对比和总结[J]. 物探与化探, 2024, 48(2): 443-450.
[2] 杨济远, 胡新茁, 周敬, 齐朋超, 李泽阳, 孟家葆, 许凡, 张会彬, 齐慧云. 冀西北宣化盆地髫髻山组粗面岩年代学、地球化学特征及其地质意义[J]. 物探与化探, 2024, 48(1): 1-14.
[3] 徐磊, 李俊, 瞿镪, 文方平, 赵萌生, 程琰勋, 徐杰, 王浩宇. 滇中中高山丘陵区大气干湿沉降元素地球化学特征及来源解析[J]. 物探与化探, 2023, 47(6): 1602-1610.
[4] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[5] 张嘉升, 周伟, 李伟良, 祁晓鹏, 杨杰, 王璐. 陕西简池镇地区1∶2.5万水系沉积物测量地球化学特征及找矿潜力[J]. 物探与化探, 2023, 47(3): 659-669.
[6] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[7] 李俊俊, 魏宇, 张庆松, 王维华, 柳维, 向亮. 四川马头金矿区土壤地球化学测量异常特征及找矿模型[J]. 物探与化探, 2023, 47(2): 309-320.
[8] 王志强, 杨建锋, 石天池. 宁夏石嘴山地区富硒土壤及其利用前景[J]. 物探与化探, 2023, 47(1): 228-237.
[9] 肖睿, 庞守吉, 祝有海, 张帅, 邹燚. 新疆甜水海地区红山湖泉水化学特征及其意义[J]. 物探与化探, 2023, 47(1): 39-46.
[10] 马常莲, 周金龙, 曾妍妍, 任贵兵, 王松涛. 新疆若羌县农用地表层土壤硒氟碘地球化学特征[J]. 物探与化探, 2022, 46(6): 1573-1580.
[11] 张哲寰, 戴慧敏, 宋运红, 杨佳佳. 黑龙江省乌裕尔河流域土壤中某些微量元素地球化学特征[J]. 物探与化探, 2022, 46(5): 1097-1104.
[12] 李永春, 苏日力格, 周文辉, 邰苏日嘎拉, 陈国栋, 王永亮, 高琪, 张祥, 张栋. 宁夏南部山区葫芦河流域土壤地球化学特征及影响因素分析[J]. 物探与化探, 2022, 46(4): 999-1010.
[13] 邢润华. 安徽省宣城市土壤硒地球化学特征及成因分析[J]. 物探与化探, 2022, 46(3): 750-760.
[14] 杨志斌, 周亚龙, 张富贵, 张舜尧, 孙忠军. 中国陆域冻土区浅表烃类地球化学特征及其成因分析[J]. 物探与化探, 2022, 46(3): 628-636.
[15] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com