E-mail Alert Rss
 

物探与化探, 2024, 48(2): 527-533 doi: 10.11720/wtyht.2024.1088

生态地质调查

防城港海域沉积物中正构烷烃分布和来源解析

庞国涛,1, 杨源祯1, 谢磊1, 李伟1, 张晓磊1,2, 闫兴国1

1.中国地质调查局 烟台海岸带地质调查中心,山东 烟台 264000

2.中国海洋大学 海洋地球科学学院,山东 青岛 266100

Distribution and sources of n-alkanes in sediments in the Fangchenggang sea area

PANG Guo-Tao,1, YANG Yuan-Zhen1, XIE Lei1, LI Wei1, ZHANG Xiao-Lei1,2, YAN Xing-Guo1

1. Yantai Center of Coastal Zone Geological Survey, China Geological Survey, Yantai 264000, China

2. College of Marine Geosciences, Ocean University of China, Qingdao 266100, China

责任编辑: 蒋实

收稿日期: 2023-02-28   修回日期: 2023-06-15  

基金资助: 中国地质调查局自然资源综合调查指挥中心项目(ZD20220131)
中国地质调查局项目(DD20191024)

Received: 2023-02-28   Revised: 2023-06-15  

作者简介 About authors

庞国涛(1990-),男,硕士,工程师,主要从事海岸带环境地质调查与评价工作。Email:pgt5241@163.com

摘要

正构烷烃由于其化学性质稳定,在自然界中普遍存在,是表征有机质来源的良好标志物。利用气质联用仪(GC/MS)对2021年9月采集的防城港海域表层沉积物中的正构烷烃进行检测,对其含量、分布特征进行分析,运用特征参数对其来源进行解析。结果表明:正构烷烃含量在(67.51~850.08)×10-9(干重)之间,均值为476.69×10-9(干重),高值区主要分布在企沙半岛南部海域;主要由连续分布的n-C14~n-C35正构烷烃同系物组成,呈双峰分布,前峰群偶碳数优势,后峰群奇碳数优势;陆、海源烷烃比(∑T/∑M)、碳优势指数(CPI)和陆、海源烷烃优势比(TAR)均指示研究区正构烷烃受陆源影响明显;平均链长(ACL)、烷烃指数(AI)和Pmar-aq进一步表明其主要来源于陆源草本植物;T-ALK/C16比值表明研究海域受到石油污染影响;姥鲛烷和植烷比值(Pr/Ph)表明研究海域沉积物中正构烷烃形成于氧化环境。

关键词: 沉积物; 正构烷烃; 特征比值; 来源

Abstract

n-alkanes, exhibiting stable chemical properties, are ubiquitous in nature. They are favorable indicators of the source of organic matter. Using the gas chromatography-mass spectrometry (GC/MS), this study detected n-alkanes in the surface sediments sampled from the Fangchenggang sea area in September 2021. It analyzed their content and distribution, as well as their source based on characteristic parameters. The results are as follows: ① The n-alkanes of the Fangchenggang sea area manifested a content range of (67.51~850.08)×10-9 (dw), averaging 476.69×10-9 (dw), with high values primarily distributed in the southern sea area of Qisha Peninsula; ② They were principally composed of extensive n-C14~n-C35 n-alkane homologues in a bimodal distribution. The former peak group displayed an even-carbon number advantage, while the latter showed an odd-carbon number advantage; ③ The terrestrial-marine alkane ratio (ΣT/ΣM), carbon predominance index (CPI), and terrestrial-marine alkane predominance ratio (TAR) all indicate a significant terrestrial influence on n-alkanes in the Fangchenggang sea area; ④ The average chain length (ACL), alkane index (AI), and Pmar-aq further suggest that n-alkanes were mainly from terrestrial herbs; ⑤ The T-ALK/C16 ratio implies that the Fangchenggang sea area experienced oil pollution; ⑥ The pristane/phytane ratio (Pr/Ph) reveals that n-alkanes in the sediments of the Fangchenggang sea area formed in an oxidizing environment.

Keywords: sediment; n-alkane; characteristic ratio; source

PDF (2425KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

庞国涛, 杨源祯, 谢磊, 李伟, 张晓磊, 闫兴国. 防城港海域沉积物中正构烷烃分布和来源解析[J]. 物探与化探, 2024, 48(2): 527-533 doi:10.11720/wtyht.2024.1088

PANG Guo-Tao, YANG Yuan-Zhen, XIE Lei, LI Wei, ZHANG Xiao-Lei, YAN Xing-Guo. Distribution and sources of n-alkanes in sediments in the Fangchenggang sea area[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 527-533 doi:10.11720/wtyht.2024.1088

0 引言

正构烷烃(n-alkanes)指没有碳支链的饱和碳氢化合物,在海洋表层沉积物中具有普遍存在性和较高的稳定性,主要来自石油污染、生物质以及化石燃料的燃烧等[1-2]。由于其化学性质稳定,能够经过长期搬运稳定保存在沉积物中,因此可通过沉积物中正构烷烃的碳数来判断其来源及沉积环境[3-4]。目前,国内外学者利用正构烷烃组分比值和特征参数等对沉积物有机质进行源解析的研究已相当成熟,Venturini等[5]通过正构烷烃总量/C16、低/高分子量比值L/H及主峰碳MH值等来判断沉积物中正构烷烃的来源;Eglinton等[6]通过对沉积物中正构烷烃的前、后峰群含量研究来判断其陆源或海源;此外,还有学者利用正构烷烃陆源与海源比值(∑T/∑M)、优势正构烷烃比值(TAR)、Pmar-aq指标、平均链长(ACL)和烷烃指数(AI)等参数对正构烷烃进行溯源研究[7-10]

防城港是我国西南地区第一大港,也是我国的深水良港,是我国西南地区走向世界的海上主门户[11]。近年来随着中国—东盟自由贸易区建设和人类活动增加,货轮航运随之增加,加之沿岸养殖业、工业的无序扩张,河流污染物质的持续输入,导致港口近岸海域的环境问题日益受到关注,生态系统遭受威胁。目前国内外学者对海洋沉积物中的正构烷烃组成及来源研究颇多[8-11],但对防城湾海域正构烷烃的研究还是空白,面对日益增长的有机质污染威胁,对该地区海域沉积物中正构烷烃的源汇研究显得尤为重要。本文以防城港海域表层沉积物中的正构烷烃为研究对象,研究其含量、组成、分布特征,并运用正构烷烃的多参数比值特征来判断沉积区有机质的来源,以期为港口近岸海域的有机质控制和环境治理提供必要的数据支撑和理论指导。

1 材料与方法

1.1 样品采集

2021年9月在防城港海域采用抓斗取样器采集表层沉积物样品21件,水深变化范围为6.5~29 m,站位分布如图1所示。抓斗出水后先将沉积物表层杂物清理干净,测试并记录样品物理性质、测深信息,而后用洁净木铲取表层0~5 cm的沉积物,去除样品中的杂质后,快速装入准备好的洁净锡纸样品袋中,密封冷冻保存直至送样。样品的采集、保存及后期处理等均按照GB 17378.3—2007[12]的相关规定进行。

图1

图1   防城港海域采样位置

Fig.1   Sampling location of Fangchenggang sea area


1.2 样品处理与仪器分析

样品测试在青岛海洋地质研究所海洋地质实验检测中心完成。样品经解冻干燥后,称取约4.0 g放入锥形瓶中,加入适量二氯甲烷与甲醇(3∶1)混合溶液,采用加速统计萃取仪(ASE,200)在100 ℃、10 MPa下静态萃取2次(10 min/次),收集得到总可萃取有机质。萃取液经柔和N2吹干后用3 mL氢氧化钠—甲醇溶液(浓度6%)进行碱水解,而后室温反应12 h,反应完全后再用正乙烷萃取得到中性有机类脂质。正乙烷萃取组分浓缩后,用硅胶层析柱进行净化,而后用8 mL正乙烷淋洗得到正构烷烃组分,再经12 mL二氯甲烷与甲醇(95∶5)混合液淋洗得到醇酮组分。淋洗液浓缩至80 μL,利用气质联用仪(GC/MS)对正构烷烃组分进行分析。

GC/MS型号为Agilent7890A/5975C MS,配有自动进样器。石英毛细管色谱柱:HP-5(30 m×0.25 mm×0.25μm)。气相色谱柱条件:进样量1 μL,采用不分流模式进样,载气为高纯氦气,流速1.0 mL/min,恒流。升温程序:进样口温度为290 ℃,80 ℃保持1 min,10 ℃/min升至200 ℃,5 ℃/min升至250 ℃,2 ℃/min升至290 ℃,保持10 min。质谱条件:电子轰击离子源(EI,70 eV),全扫模式,质量扫描范围50~600 amu。根据组分保留时间和特征离子进行定性,采用内标法和多点校准曲线进行定量。

质量控制:测定过程中所用的试剂均为优级纯,每次分析需至少做一个全程序空白样品、平行样品和加标回收样品的测定。测定结果中空白测试样品应低于方法检出限(表1),正构烷烃加标回收率为70%~120%,平行双样测定结果的相对偏差小于30%。经统计,本次测试数据均满足质量要求。

表1   正构烷烃检出限

Table 1  Detection limit of n-alkanes

名称检出限/
10-9
名称检出限/
10-9
名称检出限/
10-9
C141.2C200.3C280.4
C151.0C210.5C290.5
C160.8C220.6C300.5
C170.3C230.6C310.6
Pr0.2C240.5C320.5
C180.5C250.5C330.5
Ph0.6C260.4C341.0
C190.6C270.5C351.5

新窗口打开| 下载CSV


2 结果与讨论

2.1 正构烷烃含量和组成特征

防城港海域各个站位表层沉积物中正构烷烃含量范围为(67.51~850.08)×10-9(干重),平均值为476.69×10-9(干重),其中高值区主要分布在研究区东北部,由东北向西南含量逐渐降低(图2)。前人研究表明,研究区潮流为往复流,落潮流大于涨潮流,潮流方向为NE—SW走向[13],防城港海域沉积物正构烷烃分布和潮流方向一致,推测高值区主要是由落潮时潮流携带有机质沉积形成。

图2

图2   研究区沉积物正构烷烃分布

Fig.2   Distribution of n-alkanes in sediments of the study area


防城港海域各个站位沉积物中正构烷烃峰型相似,说明该海域表层沉积物的正构烷烃来源基本一致,正构烷烃分子数分布范围为n-C14~n-C35。为了更好地了解其组合特征,选取典型代表性站位(FC28)对其正构烷烃含量碳数作图分析(如图3所示),可以发现,研究区海域沉积物中正构烷烃呈双峰型分布,前峰群链长在n-C14~n-C21,以n-C14n-C16n-C18为主峰,具有明显的偶碳数优势;后峰群碳链在n-C22~ n-C35,其中n-C29n-C31n-C33正构烷烃含量明显高于其他碳数的正构烷烃,具有明显的奇碳数优势。后峰群含量高于前峰群,初步判断研究区沉积物中正构烷烃受陆源影响较强[14-16]。前人研究表明,木本植物输入源的正构烷烃多以n-C29为主峰,草本植物输入源的正构烷烃多以n-C31为主峰[17-18]。研究区站位正构烷烃后峰群链多以n-C31为主峰,n-C29含量略低于n-C31,可以看出,防城港海域表层沉积物中草本植物源高于木本植物源。研究区所有站位正构烷烃分布中均检测出了植烷(Ph)和姥鲛烷(Pr),说明该海域可能受到了石油及其衍生品的影响。

图3

图3   典型站位不同链长烷烃含量的直方图

Fig.3   Histogram of n-alkane content with different chain length at typical stations


正构烷烃的前峰群中n-C15~n-C21的总量∑C15-21可代表海源(浮游藻类和细菌)烷烃含量[19],后峰群中n-C25~n-C35的总量∑C25-35可代表陆源烷烃含量[20]。二者空间分布情况如图4所示,∑C15-21的变化范围为(16.30~370.80)×10-9,平均值140.52×10-9,其高值区主要分布在研究区中东部,其他区域值均较小;∑C25-35的变化范围为(45.71~488.0)×10-9,平均值291.74×10-9,其高值区主要分布在企沙半岛南部海域,受防城江入海及东部钦州湾的影响较为明显。陆源正构烷烃呈现出较为明显的近岸高值向海逐渐降低的趋势。

图4

图4   表层沉积物中海源正构烷烃∑C15-21、陆源正构烷烃∑C25-35含量的空间分布

Fig.4   Spatial distribution of marine and terrestrial n-alkanes ∑C15-21 and ∑C25-35 contents in surface sediments


为了解研究区海域正构烷烃浓度水平,将防城港海域表层沉积物中正构烷烃的浓度与国内典型海域进行对比,如表2所示,研究区海域表层沉积物中正构烷烃浓度水平远低于锦州湾、东海近岸、厦门海域和渤海及邻近海域。与其他区域相比,研究区仅有防城江有机质输入,且受防城湾的影响只有少部分能到达研究海域;此外,防城港港口建设起步较晚,海洋产业相对其他地区欠发达有关。

表2   近岸海域表层沉积物中正构烷烃浓度比较

Table 2  Comparison of n-alkane concentrations in surface sediments of offshore waters

位置碳数总量/
10-9
均值/
10-9
参考文献
锦州湾n-C8~ n-C381900~42002600[2]
东海近岸n-C14~n-C34530~22001515[21]
厦门海域n-C9~n-C361800~42702749[22]
渤海及邻近海域n-C11~n-C36900~51002250[23]
防城港海域n-C14~n-C3567.51~
850.08
476.69本研究

新窗口打开| 下载CSV


2.2 正构烷烃特征参数及来源解析

利用地球化学特征比值对正构烷烃来源进行解析已相当成熟,研究区沉积物中正构烷烃特征参数如表3所示。

表3   研究区表层沉积物正构烷烃特征参数

Table 3  The geochemical proxies of n-alkanes alkanes in surface sediments of study areas

分析项目T-ALK/10-9CPI1CPI2∑T/∑MACLTART-ALK/C16AIPmar-aqPr/Ph
FC01286.710.482.383.6030.134.2516.180.610.141.67
FC03197.340.512.272.0630.032.4310.160.570.151.41
FC0567.510.902.543.1730.112.9720.740.570.122.02
FC07544.790.372.492.9430.164.4512.960.580.131.57
FC09505.390.382.841.9730.153.039.820.590.131.57
FC11338.780.431.706.1629.678.9522.980.510.102.99
FC14457.410.573.486.6129.7610.1427.850.570.172.31
FC16474.880.432.002.2329.853.2211.970.540.131.58
FC18263.640.911.535.3829.484.8528.820.460.102.34
FC20393.220.642.262.3429.122.4514.030.540.322.95
FC22655.350.282.361.7729.433.659.380.490.191.90
FC24295.590.981.3410.6629.169.4858.370.420.101.67
FC26551.380.413.462.9830.364.0313.070.630.120.99
FC28747.270.332.781.7630.322.9711.210.610.151.37
FC30637.120.342.791.4030.312.319.330.590.160.87
FC32598.350.362.991.3530.162.318.290.580.161.43
FC34462.930.862.656.3630.187.3633.620.590.151.65
FC36743.530.472.342.6430.043.7413.010.570.121.78
FC38850.080.332.581.1530.042.148.240.570.161.71
FC40499.430.392.411.2730.031.867.510.570.181.36
FC42439.830.332.691.6329.522.819.140.520.211.50
平均值476.690.512.473.3129.914.2616.980.560.151.74

注:T-ALK为正构烷烃总量;CPI1=(C15+C17+C19+C21)/(C14+C16+C18+C20);CPI2=(C27+C29+C31+C33)/(C28+C30+C32+C34);∑T/∑M =(∑C25-35)/(∑C15-21);ACL=(∑[Ci]×i)/∑[Ci],Ci为第i个碳原子对应的正构烷烃总量; TAR=(C27+C29+C31)/(C15+C17+C19); AI=C31/(C29+C31);Pmar-aq=(C23+C25)/(C23+C25+C27+C29+C31)。

新窗口打开| 下载CSV


利用碳优势指数CPI值可以判断烷烃的来源,其中CPI1可以用来判断正构烷烃前峰链群的浮游生物源和石油源烷烃,当CPI1≤1时,主要来源于石油烃;大于1时,则主要来源于浮游植物。而CPI2则代表后峰链群受陆源高等植物源输入的影响程度[24-25]。防城港海域沉积物中CPI1值均小于1,平均值为0.51,说明研究区正构烷烃前峰链群主要来源于石油烃;CPI2值范围1.34~3.48,平均值2.47,表明受陆源物质影响较大。

利用∑T/∑M值和TAR值可以消除沉积速率和粒度等的影响,更为准确地判断沉积物中烷烃的来源及陆源、海源烷烃的相对贡献[8,26]。防城港海域∑T/∑M比值范围为1.15~10.66,平均值为3.31,指示受陆源输入影响明显;TAR值范围为1.86~10.14,平均值为4.26,表明研究海域沉积物中的正构烷烃主要来自于陆源高等植物的碎片。二者空间分布如图5所示,高值区均近似SN向分布在白龙半岛南部海域,该高值区位于防城江入海河口沉积区及防城港航道区域,研究区海域潮流基本上为与航道一致的往复流[11],且落潮最大流速可达0.9 m/s,这就导致陆源物质经防城江入海后部分沉积,部分随潮流向南迁移。

图5

图5   表层沉积物∑T/∑M、TAR空间分布

Fig.5   Spatial distribution of surface sediment ΣT/ΣM and TAR


正构烷烃指标Pmar-aq可以区分植物源的种类,当Pmar-aq值在0.01~0.25时指示陆源植物输入,浮水植物输入指数为0.4~0.5,海洋大型植物的输入值大于0.6 [9]。研究海域所有站位Pmar-aq值均小于0.25,说明其植物源较为统一,均为陆源植物来源。平均链长(ACL)和烷烃指数(AI)可以用来指示陆域来源沉积母质植物的类型和种类[10],前人研究表明木本植物正构烷烃以n-C29含量最高,草本植物则以n-C31为主峰,可根据ACL值来判断输入源,研究区ACL变化范围在29.12~30.36,平均值为29.91,说明研究区陆源输入植物以草本植物为主;利用烷烃指数(AI)可进一步确定陆源输入植物类型,当AI小于0.5时表明陆源沉积中的正构烷烃主要来自于木本植物,大于0.5则为草本植物,研究区AI值范围在0.42~0.63,平均值为0.52,进一步表明区内陆源输入主要为草本植物。

n-C16常在受石油污染海域出现,前人研究常用T-ALK/C16比值来判断沉积物是否受到石油污染,比值<30说明受到石油污染,>50则未受到石油污染[27]。本次研究中各站位均有n-C16检出,且n-C16多为前峰链群的优势组分,除FC24和FC34站位外,其他站位T-ALK/C16比值均小于30,研究区平均值为16.98,远小于30,推测研究海域普遍受到石油污染。结合研究海域位置来看,研究区位于防城港港口南部的航道和锚地处,受港口贸易行船的影响较大,石油污染可能与之有关。

前人研究表明姥鲛烷是氧化环境产物,植烷是还原环境产物,因此可利用姥鲛烷Pr和植烷Ph的比值来判断沉积物所处的氧化还原环境[28]。Pr/Ph比值高(>1)指示正构烷烃形成于氧化环境,反之则为还原环境,当其值接近于1时说明沉积区形成于氧化与缺氧条件交替出现时期[29-30]。研究区仅有FC26和FC30站位Pr/Ph比值小于1,其他站位均值为1.83,指示防城港海域沉积环境为氧化环境。

3 结论

1)防城港海域表层沉积物正构烷烃碳数范围为n-C14~n-C35,浓度范围为(67.51~850.08)×10-9,平均值为476.69×10-9。各站位峰型相似,均呈双峰型分布,前峰以n-C14n-C16n-C18为主峰,偶碳数优势;后峰以n-C29n-C31n-C33为主峰,奇碳数优势。后峰群含量高于前峰群,指示了陆源高于海源。

2)沉积物中正构烷烃的碳数奇偶优势指数特征参数比值∑T/∑M和ACL均指示研究区正构烷烃以陆源植物输入为主;特征参数比值TAR、Pmar-aq和AI均表明其主要源于陆源非浮水草本植物。

3)通过T-ALK/C16比值并结合研究区位置推测研究海域受到石油污染影响;Pr/Ph比值表明研究海域沉积物中正构烷烃形成于氧化环境。

参考文献

Akram B B A R, Mohammadi J, et al.

Characterization and ecological risk of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in sediments of Shadegan international wetland,the Persian Gulf

[J]. Marine Pollution Bulletin, 2017, 124(1): 155-170.

DOI:10.1016/j.marpolbul.2017.07.015      URL     [本文引用: 1]

李泽利, 马启敏, 程海鸥, .

锦州湾表层沉积物正构烷烃特征参数研究

[J]. 环境科学, 2011, 32(11): 3300-3304.

[本文引用: 2]

Li Z L, Ma Q M, Cheng H O, et al.

Normal alkanes characteristic parameters of Jinzhou Bay surface sediments

[J]. Environmental Science, 2011, 32(11): 3300-3304.

[本文引用: 2]

Bush R T, Mcinerney F A.

Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy

[J]. Geochimica et Cosmochimica Acta, 2013, 117:161-179.

DOI:10.1016/j.gca.2013.04.016      URL     [本文引用: 1]

朱纯, 潘建明, 卢冰, .

长江口及邻近海域现代沉积物中正构烷烃分子组合特征及其对有机碳运移分布的指示

[J]. 海洋学报, 2005, 27(4):59-67.

[本文引用: 1]

Zhu C, Pan J M, Lu B, et al.

Compositional feature of n-alkanes in modern sediment from the Changjiang Estuary and adjacent area and its implication to transport and distribution of organic carbon

[J]. Acta Oceanologica Sinica, 2005, 27(4):59-67.

[本文引用: 1]

Venturini N, Pita A L, Brugnoli E, et al.

Benthic trophic status of sediments in a metropolitan area (Rio de la Plata estuary): Linkages with natural and human pressures

[J]. Estuarine Coastal & Shelf Science, 2012, 112:139-152.

[本文引用: 1]

Eglinton G, Hamilton R J.

Leaf epicuticular waxes

[J]. Science, 1967, 156(3780):1322-1335.

PMID:4975474      [本文引用: 1]

The external surface of the higher plants comprises a cuticular layer covered by a waxy deposit. This deposit is believed to play a major part in such phenomena as the water balance of plants and the behavior of agricultural sprays. The wax contains a wide range of organic compounds. These complex mixtures are amenable to modern microchromatographic and microspectrometric analytical procedures. The few surveys which have been made of the species distribution of certain classes of constituents indicate that such distribution may be of limited taxonomic value; however, the wax composition of a species may differ for different parts of the same plant and may vary with season, locale, and the age of the plant. This fascinating subject, in which the disciplines of botany, biochemistry, chemistry, and physics overlap and interact, is still in a very active state. Much remains to be learned about the composition and fine structure of the wax deposits, and, for this, experimental study of wax crystallization and permeation through artificial membranes will be required. Enzymic studies, radiolabeling, and electron microscopy will be needed to reveal the mode of biogenesis of the wax constituents and their site of formation and subsequent pathway through the cuticle to the leaf surface.

Duan Y.

Organic geochemistry of recent marine sediments from the Nansha Sea,China

[J]. Organic Geochemistry, 2000, 31(2/3):159-167.

DOI:10.1016/S0146-6380(99)00135-7      URL     [本文引用: 1]

Silliman J E, Schelske C L.

Saturated hydrocarbons in the sediments of Lake Apopka,Florida

[J]. Organic Geochemistry, 2003, 34(3):253-260.

DOI:10.1016/S0146-6380(02)00169-9      URL     [本文引用: 3]

Wang Z, Liu W G.

Carbon chain length distribution in n-alkyl lipids:A process for evaluating source inputs to Lake Qinghai

[J]. Organic Ceochemistry, 2012, 50:36-43.

[本文引用: 3]

赵美训, 张玉琢, 邢磊, .

南黄海表层沉积物中正构烷烃的组成特征、分布及其对沉积有机质来源的指示意义

[J]. 中国海洋大学学报:自然科学版, 2011, 41(4): 90-96.

[本文引用: 3]

Zhao M X, Zhang Y Z, Xing L, et al.

The composition and distribution of n-alkanes in surface sediments from the South Yellow Sea and their potential as organic matter source indicators

[J]. Periodical of Ocean University of China, 2011, 41(4):90-96.

[本文引用: 3]

防城港市地方志编纂委员会办公室. 防城港年鉴2016[M]. 南宁: 广西人民出版社, 2018.

[本文引用: 3]

Office of Fangchenggang Local Chronicles Compilation Committee. Fangchenggang yearbook 2016[M]. Nanning: Guangxi People's Publishing House, 2018.

[本文引用: 3]

中国国家标准化管理委员会. GB 17378.3—2007海洋监测规范第3部分:样品采集、贮存与运输[S]. 北京: 中国标准出版社, 2007.

[本文引用: 1]

The Standardization Administration of China. GB 17378.3—2007 The specification for marine monitoring.Part 3:Sample collection, storage and transportation[S]. Beijing: Chinese Standard Publishing house,2008.

[本文引用: 1]

周争桥, 夏维.

防城港海域潮流特征分析

[J]. 海洋湖沼通报, 2021, 43(4):62-67.

[本文引用: 1]

Zhou Z Q, Xia W.

An analysis of tidal current characteristics of Fangchenggang sea area

[J]. Transactions of Oceanology and Limnology, 2021, 43(4):62-67.

[本文引用: 1]

Lei X, Zhang R, Liu Y, et al.

Biomarker records of phytoplankton productivity and community structure changes in the Japan Sea over the last 166 kyr

[J]. Quaternary Science Reviews, 2011, 30(19):2666-2675.

DOI:10.1016/j.quascirev.2011.05.021      URL     [本文引用: 1]

Ternois Y, Kawamura K, Keigwin L, et al.

A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27,000 years

[J]. Geochimica et Cosmochimica Acta, 2001, 65(5):791-802.

DOI:10.1016/S0016-7037(00)00598-6      URL     [本文引用: 1]

阎琨, 庞国涛, 李伟.

广西茅尾海潮间带表层沉积物有机物特征及来源分析

[J]. 海洋环境科学, 2022, 41(2):303-308.

[本文引用: 1]

Yan K, Pang G T, Li W.

Characteristics and sources of organic matter in surface sediments of the intertidal zone in Maowei sea,Guangxi

[J]. Marine Environmental Science, 2022, 41(2):303-308.

[本文引用: 1]

Mead R, Xu Y, Chong J, et al.

Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes

[J]. Organic Geochemistry, 2005, 36(3):363-370.

DOI:10.1016/j.orggeochem.2004.10.003      URL     [本文引用: 1]

Ficken K J, Li B, Swain D L, et al.

An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes

[J]. Organic Geochemistry, 2000, 31(7/8):745-749.

DOI:10.1016/S0146-6380(00)00081-4      URL     [本文引用: 1]

Blumer M, Guillard R R L, Chase T.

Hydrocarbons of marine phytoplankton

[J]. Marine Biology, 1971, 8(3):183-189.

DOI:10.1007/BF00355214      URL     [本文引用: 1]

Eglinton G, Hamilton R J.

Leaf epicuticular waxes

[J]. Science, 1967, 156(3780):1322-1335.

PMID:4975474      [本文引用: 1]

The external surface of the higher plants comprises a cuticular layer covered by a waxy deposit. This deposit is believed to play a major part in such phenomena as the water balance of plants and the behavior of agricultural sprays. The wax contains a wide range of organic compounds. These complex mixtures are amenable to modern microchromatographic and microspectrometric analytical procedures. The few surveys which have been made of the species distribution of certain classes of constituents indicate that such distribution may be of limited taxonomic value; however, the wax composition of a species may differ for different parts of the same plant and may vary with season, locale, and the age of the plant. This fascinating subject, in which the disciplines of botany, biochemistry, chemistry, and physics overlap and interact, is still in a very active state. Much remains to be learned about the composition and fine structure of the wax deposits, and, for this, experimental study of wax crystallization and permeation through artificial membranes will be required. Enzymic studies, radiolabeling, and electron microscopy will be needed to reveal the mode of biogenesis of the wax constituents and their site of formation and subsequent pathway through the cuticle to the leaf surface.

李凤, 徐刚, 贺行良, .

东海近岸表层沉积物中正构烷烃的组成、分布及来源分析

[J]. 海洋环境科学, 2016, 35(3):398-403.

[本文引用: 1]

Li F, Xu G, He X L, et al.

Composition,distribution and source of N-alkanes in surface sediments from the coast of East China Sea

[J]. Marine Environmental Science, 2016, 35(3):398-403.

[本文引用: 1]

邝伟明, 陈文锋, 陈金民.

厦门海域正构烷烃组成特征及石油烃污染情况研究

[J]. 海洋环境科学, 2017, 36(1):76-80.

[本文引用: 1]

Kuang W M, Chen W F, Chen J M.

The characteristic parameters of N-alkanes and petroleum pollution of Xiamen bay

[J]. Marine Environmental Science, 2017, 36(1):76-80.

[本文引用: 1]

李胜勇, 邓伟, 张大海, .

渤海及邻近海域表层沉积物中烃类物质的分布特征及其指示意义

[J]. 海洋环境科学, 2017, 36(4):501-508.

[本文引用: 1]

Li S Y, Deng W, Zhang D H, et al.

Distribution and its indication significance of hydrocarbons in surface sediments from Bohai Sea and adjacent area

[J]. Marine Environmental Science, 2017, 36(4):501-508.

[本文引用: 1]

Xiao B, Han Y, Liu J.

Evaluation of biohydrogen production from glucose and protein at neutral initial pH

[J]. International Journal of Hydrogen Energy, 2010, 35(12):6152-6160.

DOI:10.1016/j.ijhydene.2010.03.084      URL     [本文引用: 1]

Li J Z, Zheng G C, He J G, et al.

Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor

[J]. Biotechnology Advances, 2009, 27(5):573-577.

DOI:10.1016/j.biotechadv.2009.04.007      PMID:19393312      [本文引用: 1]

A continuous stirred-tank reactor was used as an anaerobic sludge system and the hydrogen production capabilities of three typical fermentations, in terms of specific hydrogen production rates, were investigated under the same hydraulic retention times (8 h) and influent chemical oxygen demand (5000 mg/L) at 35 degrees C. The reactor was continuously fed with diluted molasses, while the pH and oxidation reduction potential in the reactor were regulated to control the type of fermentation. The specific hydrogen production rate of the anaerobic sludge reached 2.96 mol/kg mixed liquid volatile suspended solid (MLVSS)/day, (mol x kg MLVSS(-1) d(-1)), in ethanol-type fermentation, while 0.57 mol x kg MLVSS(-1) d(-1) in butyric acid-type fermentation, and 0.022 mol x kg MLVSS(-1) d(-1) in propionic acid-type fermentation. The hydrogen production capability of ethanol-type fermentation was 4.11 times greater than that of butyric acid-type fermentation and 148 times that of propionic acid-type fermentation.

Duan Y.

Organic geochemistry of recent marine sediments from the Nansha Sea,China-Science direct

[J]. Organic Geochemistry, 2000, 31(2/3):159-167.

DOI:10.1016/S0146-6380(99)00135-7      URL     [本文引用: 1]

Guo W, He M, Yang Z, et al.

Characteristics of petroleum hydrocarbons in surficial sediments from the Songhuajiang River (China):Spatial and temporal trends

[J]. Environmental Monitoring & Assessment, 2011, 179(1-4):81-92.

[本文引用: 1]

李从玲.

近代海洋沉积物(层)中姥鲛烷/植烷比值及其地球化学意义

[J]. 海洋地质与第四纪地质, 1990, 10(4):77-88

[本文引用: 1]

Li C L.

Pristane/phytane ratio in recent marine sediment (sedimentary layer) and its geochemical significance

[J]. Marine Geology & Quaternary Geology, 1990, 10(4):77-88.

[本文引用: 1]

Ten H H L, De L J W, Rullkotter J, et al.

Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator

[J]. Nature, 1987, 330(6149):641-643.

DOI:10.1038/330641a0      [本文引用: 1]

韩喜彬, 赵军, 初凤友, .

南极半岛东北海域表层沉积有机质来源及其沉积环境

[J]. 海洋学报, 2015, 37(8):26-38.

[本文引用: 1]

Han X B, Zhao J, Chu F Y, et al.

The source of organic matter and its sedimentary environment of the bottomsurface sediment in northeast waters to Antarctic Peninsulabased on the biomarker features

[J]. Acta Oceanologica Sinica, 2015, 37(8):26-38.

DOI:10.1007/s13131-018-1279-0      [本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com