Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (5): 1298-1306    DOI: 10.11720/wtyht.2023.1347
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于神经网络的探地雷达数据去噪
吴嵩1(), 宁晓斌2,3(), 杨庭伟2,3,4, 姜洪亮2,3,4, 卢超波2,3,4, 苏煜堤2
1.广西田新高速公路有限公司,广西 南宁 530022
2.广西交科集团有限公司,广西 南宁 530007
3.广西壮族自治区公路隧道安全预警工程研究中心,广西 南宁 530007
4.广西道路结构与材料重点实验室,广西 南宁 530007
Neural network-based denoising for ground-penetrating radar data
WU Song1(), NING Xiao-Bin2,3(), YANG Ting-Wei2,3,4, JIANG Hong-Liang2,3,4, LU Chao-Bo2,3,4, SU Yu-Di2
1. Guangxi Tianxin Expressway Co.,Ltd.,Nanning 530022,China
2. Guangxi Transportation Co.,Ltd.,Nanning 530007,China
3. Guangxi Highway Tunnel Safety Warning Engineering Research Center,Nanning 530007,China
4. Guangxi Key Lab of Road Structure and Materials,Nanning 530007,China
全文: PDF(6256 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

探地雷达数据在实际工程检测过程中常被各种随机噪声污染,而数据中的噪声会降低数据的信噪比和分辨率,进而给后续的反演和解释等工作带来不利影响。对此,本文开展了基于神经网络的探地雷达数据去噪研究。首先,建立1个多层神经网络,向无噪声数据加入高斯白噪声破坏数据。然后,将破坏后的数据和其对应的噪声的patch建立训练数据,通过反向传播算法更新模型各层神经元权重,使得模型训练损失值最小。最后,将两个合成数据和实测雷达数据输入到已训练好的模型,用其训练得到噪声特性权重计算模型输出。通过与曲波法的数值模拟试验结果对比验证了本文方法的有效性和鲁棒性,且本文方法对结构复杂、幅值较弱区域的噪声压制更彻底,有效信号展现得更清晰。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴嵩
宁晓斌
杨庭伟
姜洪亮
卢超波
苏煜堤
关键词 探地雷达(GPR)神经网络多层感知机反向传播高斯白噪数据去噪    
Abstract

Ground-penetrating radar (GPR) data are often contaminated by random noise in the actual engineering inspection.The noise in data will reduce the signal-to-noise ratio and resolution of the data,adversely affecting the subsequent inversion and interpretation.Accordingly,this study proposed neural network-based denoising for GPR data.First,a multi-layer neural network model was constructed to integrate the data corrupted by white Gaussian noise into the noise-free data.Then,the corrupted data and their corresponding noise patches were built as training data.The weights of neurons in every layer of the model e updated using a back-propagation algorithm to minimize the model training loss.Finally,the two synthetic data and the measured radar data were input to the trained model,and the model's output was calculated using the noise characteristic weights acquired from the training.Compared with the curvelet transform,the numerical simulation test results verify the effectiveness and robustness of the method proposed in this study.Moreover,the proposed method can suppress the noise more thoroughly in areas with complex structures and weak amplitudes,and show effective signals more clearly.

Key wordsground penetrating radar(GPR)    neural network    multi-layer perceptron    back propagation    white Gaussian noise    data denoising
收稿日期: 2022-07-26      修回日期: 2023-05-30      出版日期: 2023-10-20
ZTFLH:  P631.4  
基金资助:广西重点研发计划项目(AB21220069)
通讯作者: 宁晓斌
作者简介: 吴嵩(1984-),男,本科,主要从事高速公路、铁路项目建设管理工作。Email:262607406@qq.com
引用本文:   
吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
WU Song, NING Xiao-Bin, YANG Ting-Wei, JIANG Hong-Liang, LU Chao-Bo, SU Yu-Di. Neural network-based denoising for ground-penetrating radar data. Geophysical and Geochemical Exploration, 2023, 47(5): 1298-1306.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1347      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I5/1298
Fig.1  单个神经元模型
Fig.2  含1个隐藏层的感知机模型
Fig.3  运算模块
Fig.4  序列模型
Fig.5  MLP网络结构框架
Fig.6  去噪结果
噪声/dB 正演数据含噪
信噪比/dB
MLP去噪结果
信噪比/dB
曲波去噪结果
信噪比/dB
MLP去噪后结
构性相似指标
曲波去噪后结
构性相似指标
10 28.14 42.38 35.59 0.239 0.196
25 20.17 37.57 27.83 0.229 0.143
35 17.24 35.57 25.36 0.200 0.124
50 14.13 33.21 22.90 0.182 0.099
65 11.86 32.26 21.24 0.166 0.081
75 10.62 31.14 20.40 0.161 0.071
170 3.54 25.88 16.87 0.099 0.022
Table 1  神经网络和曲波去噪方法对不同噪声去噪效果的比较
Fig.7  MLP和曲波去噪方法对不同噪声去噪效果的比较
Fig.8  复杂数据去噪结果
Fig.9  实际数据去噪结果
[1] 戴前伟, 吴铠均, 张彬. 短时傅里叶变换在GPR数据解释中的应用[J]. 物探与化探, 2016, 40(6):1227-1231.
[1] Dai Q W, Wu K J, Zhang B. A study of application of short-time Fourier transform to GPR data interpretation[J]. Geophysical and Geochemical Exploration, 2016, 40(6):1227-1231.
[2] 张斯薇, 吴荣新, 韩子傲, 等. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2):496-501.
[2] Zhang S W, Wu R X, Han Z A, et al. The application of bilateral filtering to denoise processing of ground penetrating radar data[J]. Geophysical and Geochemical Exploration, 2021, 45(2):496-501.
[3] 戴前伟, 成沁宇, 冯德山. 基于FastICA的低信噪比探地雷达信号去噪[J]. 物探化探计算技术, 2017, 39(6):727-735.
[3] Dai Q W, Cheng Q Y, Feng D S. Low signal-noise ratio GPR signal denoising based on FastICA[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(6):727-735.
[4] 苏智光, 廖建军, 钱东宏. 探地雷达野外勘察数据干扰及其滤除方法[J]. 物探与化探, 2011, 35(3):427-430.
[4] Su Z G, Liao J J, Qian D H. The interference signal in GPR survey data and its filtering[J]. Geophysical and Geochemical Exploration, 2011, 35(3):427-430.
[5] 周威帆. 基于f-x域模态分解的探地雷达数据处理与解释[D]. 长春: 吉林大学, 2020.
[5] Zhou W F. Data processing and interpretation of GPR based on mode decomposition in f-x domain[D]. Changchun: Jilin University, 2020.
[6] 王超, 沈斐敏. 小波变换在探地雷达弱信号去噪中的研究[J]. 物探与化探, 2015, 39(2):421-424.
[6] Wang C, Shen F M. Study of wavelet transform in ground penetration radar weak signal denoising[J]. Geophysical and Geochemical Exploration, 2015, 39(2):421-424.
[7] 李静和, 何展翔, 杨俊, 等. 曲波域统计量自适应阈值探地雷达数据去噪技术[J]. 物理学报, 2019, 68(9):74-83.
[7] Li J H, He Z X, Yang J, et al. Scale and rotation statistic-based self-adaptive function for ground penetrating radar denoising in curvelet domain[J]. Acta. Phys. Sin., 2019, 68(9):74-83.
[8] 吴学礼, 闫枫, 甄然, 等. 基于小波变换和K-SVD的探地雷达杂波抑制研究[J]. 河北科技大学学报, 2021, 42(2):111-118.
[8] Wu X L, Yan F, Zhen R, et al. Research on adaptive clutter suppression for ground penetrating radar based on wavelet transform and K-SVD[J]. Journal of Hebei University of Science and Technology, 2021, 42(2):111-118.
[9] 周旭辉, 马杰良, 吴蕾, 等. 基于正交多项式拟合的风廓线雷达风谱识别[J]. 现代雷达, 2011, 33(11):27-31.
[9] Zhou X H, Ma J L, Wu L, et al. Wind spectra identification of the WPR based on orthogonal polynomial fitting[J]. Modern Radar, 2011, 33(11):27-31.
[10] 唐斌兵, 王正明, 汪雄良. 一种含椒盐噪声图像去噪的新方法[J]. 系统工程, 2008, 26(10):123-126.
[10] Tang B B, Wang Z M, Wang X L. A new method of removing salt-and-pepper noise in images[J]. Systems Engineering, 2008, 26(10):123-126.
[11] 张东昊, 覃晖. 基于探地雷达和深度学习的隧道初期支护检测方法[J]. 现代隧道技术, 2020, 57(S1):174-178.
[11] Zhang D H, Qin H. Tunnel primary support detection using ground penetrating radar and deep learning[J]. Modern Tunnelling Technology, 2020, 57(S1):174-178.
[12] Han D, Tao L, Leng J B, et al. GCN:GPU-based cube CNN framework for hyperspectral image classification[C]// International Conference on Parallel Processing, 2017, 46:41-49.
[13] 景卓鑫. 基于神经网络方法与RADARSAT-2雷达遥感数据的水稻参数反演研究[D]. 上海: 华东师范大学, 2014.
[13] Jing Z X. Retriving paddy rice biophysical parameters from RADARSAT-2 radar using neural network[D]. Shanghai: East China Normal University, 2014.
[14] 徐昕军, 勾妍妍, 杨峰. 基于探地雷达与概率神经网络的城市道路路基病害预警模型研究[J]. 科学技术与工程, 2017, 17(17):118-124.
[14] Xu X J, Gou Y Y, Yang F. Research on early warning Model of roadbed diseases under urban roads based on GPR and probabilistic neural network[J]. Science Technology and Engineering, 2017, 17(17):118-124.
[15] 吕永标, 赵建伟, 曹飞龙. 基于复合卷积神经网络的图像去噪算法[J]. 模式识别与人工智能, 2017, 30(2):97-105.
doi: 10.16451/j.cnki.issn1003-6059.201702001
[15] Lyu Y B, Zhao J W, Cao F L. Image denoising algorithm based on composite convolutional neural network[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(2):97-105.
[16] 李寻昌, 叶君文, 李葛, 等. 基于滑坡监测数据的Elman神经网络动态预测[J]. 煤田地质与勘探, 2018, 46(3):113-120,126.
[16] Li X C, Ye J W, Li G, et al. Elman neural network dynamic prediction based on landslide monitoring data[J]. Coal Geology & Exploration, 2018, 46(3):113-120,126.
[17] Silver D, Huang A, Maddision C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489.
doi: 10.1038/nature16961
[18] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communication ACM, 2017, 60(6):84-90.
doi: 10.1145/3065386
[19] Jain V, Seung H S. Natural image denoising with convolutional networks[J]. Advances in Neural Information Processing Systems(NIPS), 2008, 21:769-776.
[20] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
doi: 10.1109/5.726791
[21] Chen S, Abhinav S, Saurabh S, et al. Revisiting unreasonable effectiveness of data in deep learning era[C]// 2017 IEEE International Conference on Computer Vision (ICCV), 2017:843-852.
[22] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229-1251.
[22] Zhou F Y, Jin L P, Dong J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6):1229-1251.
[23] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5):359-366.
doi: 10.1016/0893-6080(89)90020-8
[24] Burger H C, Schuler C J, Harmeling S, et al. Image denoising:Can plain neural networks compete with BM3D?[C]// Computer Vision and Pattern Recognition, 2012:2392-2399.
[25] 杨光照. 基于探地雷达的煤岩界面识别技术研究[D]. 徐州: 中国矿业大学, 2019.
[25] Yang G Z. Research on coal-rock interface recognition technology based on ground penetrating radar[D]. Xuzhou: China University of Mining and Technology, 2019.
[26] 冯德山, 杨子龙. 基于深度学习的隧道衬砌结构物探地雷达图像自动识别[J]. 地球物理学进展, 2020, 35(4):1552-1556.
[26] Feng D S, Yang Z L. Automatic recognition of ground penetrating radar image of tunnel lining structure based on deep learning[J]. Progress in Geophysics, 2020, 35(4):1552-1556.
[27] 季银涛. 基于深度学习的探地雷达图像介电常数反演研究[D]. 济南: 山东大学, 2021.
[27] Ji Y T. Deep learning based ground penetrating radar image permittivity inversion research[D]. Jinan: Shandong University, 2021.
[28] Sergey I, Christian S. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]// International Conference on Machine Learning,PMLR, 2015:448-456.
[29] 冯德山, 戴前伟, 何继善, 等. 探地雷达GPR正演模拟的时域有限差分实现(英文)[J]. 地球物理学进展, 2006, 21(2):630-636.
[29] Feng D S, Dai Q W, He J S, et al. Finite difference time domain method of GPR forward simulation[J]. Progress in Geophysics, 2006, 21(2):630-636.
[1] 游希然, 张继锋, 石宇. 基于人工神经网络的瞬变电磁成像方法[J]. 物探与化探, 2023, 47(5): 1206-1214.
[2] 周慧, 孙成禹, 刘英昌, 蔡瑞乾. 基于DC-UNet卷积神经网络的强噪声压制方法[J]. 物探与化探, 2023, 47(5): 1288-1297.
[3] 王宗仁, 文畅, 谢凯, 盛冠群, 贺建飚. 多尺度时频空三域特征联合下的储层岩性识别方法[J]. 物探与化探, 2023, 47(1): 81-90.
[4] 陈超群, 戴慧敏, 冯雨林, 杨泽, 杨佳佳. 基于Sentinel-2A的孙吴地区土壤有机质反演研究[J]. 物探与化探, 2022, 46(5): 1141-1148.
[5] 王蓉, 熊杰, 刘倩, 薛瑞洁. 基于深度神经网络的重力异常反演[J]. 物探与化探, 2022, 46(2): 451-458.
[6] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[7] 张鹏飞, 张世晖. 西湖凹陷平湖组砂泥岩岩性神经网络地震预测[J]. 物探与化探, 2021, 45(4): 1014-1020.
[8] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[9] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
[10] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[11] 梁立锋, 刘秀娟, 张宏兵, 陈程浩, 陈锦华. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1): 133-139.
[12] 臧子婧, 吴海波, 丁海, 张平松, 董守华. 基于优选地震属性与PSO-BP模型的煤层含气量预测[J]. 物探与化探, 2020, 44(6): 1381-1386.
[13] 王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2): 394-400.
[14] 付康伟, 张学强, 彭炎. BP神经网络算法在陆域天然气水合物成藏预测中的应用[J]. 物探与化探, 2019, 43(3): 486-493.
[15] 王嘉怡, 郝立波, 赵新运, 马成有, 陆继龙, 赵玉岩, 魏俏巧. 基于土壤化学成分的基岩岩石类型识别[J]. 物探与化探, 2018, 42(6): 1180-1185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com