Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (5): 1250-1260    DOI: 10.11720/wtyht.2023.1556
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于速度移动窗的最小熵法在GPR逆时偏移中的应用
席宇何(), 王洪华(), 王欲成, 吴祺铭
桂林理工大学 地球科学学院,广西 桂林 541004
Application of the minimum entropy method based on a velocity-controlled moving window to the reverse time migration of ground-penetrating radars
XI Yu-He(), WANG Hong-Hua(), WANG Yu-Cheng, WU Qi-Ming
College of Earth Sciences,Guilin University of Technology,Guilin 541004,China
全文: PDF(6342 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

速度是决定探地雷达(GPR)偏移成像分辨率的关键参数,基于图像最小熵与偏移相结合的方法通常将整体偏移剖面作为固定窗计算熵值曲线来估计介质速度,不但难以适用于介质非均匀分布情况,而且试速度过大或过小均会使双曲线绕射波的收敛位置溢出固定窗,降低估计精度。为此,本文利用试速度精确控制偏移剖面中的计算窗,提出了一种基于速度移动窗的最小熵法,并与逆时偏移相结合,估计最佳偏移速度。该方法通过试速度自动调整计算窗位置,可使双曲线绕射波收敛位置始终位于计算窗中心,从而获得稳定、准确的熵值曲线。将一条典型双曲线绕射波的固定窗和速度移动窗最小熵法的计算结果作对比,验证了速度移动窗的最小熵法的正确性和有效性。数值试验和实测数据测试表明:与固定窗最小熵法相比,速度移动窗的最小熵法可将双曲线绕射波收敛位置精确固定于计算窗中心,熵值曲线更稳定,计算量更小,偏移速度估计精度更高,逆时偏移成像效果更好。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
席宇何
王洪华
王欲成
吴祺铭
关键词 探地雷达速度移动窗最小熵法逆时偏移    
Abstract

Velocity is a key parameter determining the migration imaging resolution of ground penetrating radars (GPR).The method combining minimum image entropy and migration usually estimates the medium velocity by calculating the entropy curves using the overall migration profile as a fixed window.Therefore,such a method is not applicable to non-uniformly distributed media.Moreover,for this method,a too-high or too-low test velocity will make the convergence position of hyperbolic diffracted waves go beyond the fixed window,thus reducing the estimation accuracy.This study proposed a minimum entropy method based on a velocity-controlled moving window,in which the calculation window in the migration profile is accurately controlled by the test velocity.Then,this method was combined with inverse time migration to estimate the optimal migration velocity.By automatically adjusting the position of the calculation window using the trial velocity,this method keeps the convergence position of hyperbolic diffracted waves at the center of the calculation window.In this manner,stable and accurate entropy curves can be obtained.By comparing the calculation results with those of the minimum entropy method based on a fixed window,this study verified the correctness and effectiveness of the minimum entropy method based on a velocity-controlled moving window for a typical hyperbolic diffracted wave.As revealed by numerical experiments and the tests of measured data,compared with the minimum entropy method based on a fixed window,the minimum entropy method based on a velocity-controlled moving window can keep the convergence position of hyperbolic diffracted waves accurately at the center of the calculation window,yielding more stable entropy curves,lower computational complexity,higher estimation accuracy of the migration velocity,and better imaging performance of reverse time migration.

Key wordsground-penetrating radar (GPR)    velocity-controlled moving window    minimum entropy method    reverse time migration
收稿日期: 2022-11-24      修回日期: 2023-08-08      出版日期: 2023-10-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(42364010);广西自然科学基金项目(2020GXNSFAA035595)
通讯作者: 王洪华
作者简介: 席宇何(1998-),男,硕士研究生,主要从事探地雷达逆时偏移成像方面的研究工作。Email:1076571663@qq.com
引用本文:   
席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
XI Yu-He, WANG Hong-Hua, WANG Yu-Cheng, WU Qi-Ming. Application of the minimum entropy method based on a velocity-controlled moving window to the reverse time migration of ground-penetrating radars. Geophysical and Geochemical Exploration, 2023, 47(5): 1250-1260.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1556      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I5/1250
Fig.1  含有一条双曲线的GPR二维剖面
Fig.2  均匀介质的速度模型(a)及其正演剖面(b)
Fig.3  采用不同窗口计算的熵值曲线
Fig.4  计算过程中不同试速度的逆时偏移剖面
Fig.5  采用最佳偏移速度0.1 m/ns计算出的逆时偏移剖面
Fig.6  层状介质的速度模型(a)及其正演剖面(b)
Fig.7  采用不同窗口计算绕射波1的熵值曲线
Fig.8  计算绕射波1过程中不同试速度的逆时偏移剖面
Fig.9  采用不同窗口计算绕射波2的熵值曲线
Fig.10  计算绕射波2过程中不同试速度的逆时偏移剖面
Fig.11  采用最佳偏移速度计算出的逆时偏移剖面
Fig.12  实测GPR二维剖面
Fig.13  不同窗口计算绕射波1的熵值曲线
Fig.14  计算绕射波1过程中不同试速度的逆时偏移剖面
Fig.15  不同窗口计算绕射波2的熵值曲线
Fig.16  计算绕射波2过程中不同试速度的逆时偏移剖面
Fig.17  采用最佳偏移速度计算出的逆时偏移剖面
[1] 甄志中, 王晋国, 石显新. 2D有限差分偏移技术在探地雷达信号成像中的应用[J]. 煤田地质与勘探, 2007, 35(6):57-60.
[1] Zhen Z Z, Wang J G, Shi X X. Ground penetrating radar data imaging via the 2D finite-diffrence migration method[J]. Coal Geology & Exploration, 2007, 35(6):57-60.
[2] 冯德山, 张彬, 戴前伟, 等. 基于速度估计的改进型线性变换有限差分偏移在探地雷达中的应用[J]. 地球物理学报, 2011, 54(5):1340-1347.
[2] Feng D S, Zhang B, Dai Q W, et al. The application of the improved linear transformation of finite difference migration basedon the velocity estimation in the GPR date processing[J]. Chinese Journal of Geophysics, 2011, 54(5):1340-1347.
[3] 于景兰, 王春和. 探地雷达探测地下目标时的波速估计[J]. 地球物理学进展, 2003, 18(3):477-480.
[3] Yu J L, Wang C H. Estimation of EM wave velocity in detecting underground target by GPR[J]. Progress in Geophysics, 2003, 18(3):477-480.
[4] 崔凡, 李思远, 王丽冰. 基于互相关分析及最小二乘拟合的 GPR 偏移速度估计[J]. 地球物理学进展, 2018, 33(1):353-361.
[4] Cui F, Li S Y, Wang L B. Migration velocity estimation of GPR based on cross-correlation and least square fitting[J]. Progress in Geophysics, 2018, 33(1):353-361.
[5] 许献磊, 赵艳玲, 王方, 等. GPR探测地埋管径研究综述[J]. 地球物理学进展, 2012, 27(5):2206-2215.
[5] Xu X L, Zhao Y L, Wang F, et al. Review on diameter detection of underground pipe with GPR[J]. Progress in Geophys, 2012, 27(5):2206-2215.
[6] 邓小燕, 王通. 探地雷达探测中对媒质相对介电常数的测定[J]. 物探与化探, 2009, 33(1):43-45.
[6] Deng X Y, Wang T. The measurement of relative dielectic constant of media in GPR exploration[J]. Geophysical and Geochemical Exploration, 2009, 33(1):43-45.
[7] 戴前伟, 宁晓斌, 张彬. 基于共中心点道集约束的探地雷达波阻抗反演[J]. 煤田地质与勘探, 2020, 48(3):211-218.
[7] Dai Q W, Ning X B, Zhang B. Common midpoint gather constraint-based impedance inversion of ground penetrating radar[J]. Coal Geology & Exploration, 2020, 48(3):211-218.
[8] 张崇民, 张凤凯, 李尧. 隧道施工不良地质探地雷达超前探测全波形反演研究[J]. 隧道建设, 2019, 39(1):102-109.
[8] Zhang C M, Zhang F K, Li Y. Study of Full Waveform Inversion of Advance Tunnel Geological Prediction by Ground Penetrating Radar.Tunnel Construction[J]. Tunnel Construction, 2019, 39(1):102-109.
[9] Feng D S, Wang X, Zhang B. Improving reconstruction of tunnel lining defects from ground-penetrating radar profiles by multi-scale inversion and bi-parametric full-waveform inversion[J]. Advanced Engineering Informatics, 2019, 41:100931.
doi: 10.1016/j.aei.2019.100931
[10] 李昕洁, 王维红, 郭雪豹, 等. 全波形反演正则化方法对比[J]. 石油地球物理勘探, 2022, 57(1):129-139.
[10] Li X J, Wang W H, Guo X B, et al. Comparison of regularization methods for full-wave-form inversion[J]. Oil Geophysical Prospecting, 2022, 57(1):129-139.
[11] Gaber A, Gemail K S, Kamel A, et al. Integration of 2D/3D ground penetrating radar and electrical resistivity tomography surveys as enhanced imaging of archaeological ruins:A case study in San El-Hager (Tanis) site,northeastern Nile Delta,Egypt[J]. Archaeological Prospection, 2021, 28(2):251-267.
doi: 10.1002/arp.v28.2
[12] Liu H, Long Z J, Tian B, et al. Two-Dimensional Reverse-Time Migration Applied to GPR With a 3-D-to-2-D Data Conversion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(10):4313-4320.
doi: 10.1109/JSTARS.4609443
[13] Liu H, Long Z J, Han F, et al. Frequency-Domain Reverse-Time Migration of Ground Penetrating Radar Based on Layered Medium Green's Functions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8):2957-2965.
doi: 10.1109/JSTARS.4609443
[14] Zhu W Q, Huang Q H, Liu L B, et al. Three-Dimensional Reverse Time Migration of Ground-Penetrating Radar Signals[J]. Pure and Applied Geophysics, 2020, 177(2):853-865.
doi: 10.1007/s00024-019-02341-x
[15] Al-Nuaimy W, Huang Y, Nakhkash M, et al. Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition[J]. Journal of applied Geophysics, 2000, 43(2-4):157-165.
doi: 10.1016/S0926-9851(99)00055-5
[16] Shihab S, Al-Nuaimy W. Radius estimation for cylindrical objects detected by ground penetrating radar[J]. Subsurface sensing technologies and applications, 2005, 6(2):151-166.
doi: 10.1007/s11220-005-0004-1
[17] De Vries D, Berkhout A J. Velocity analysis based on minimum entropy[J]. Geophysics, 1984, 49(12):2132-2142.
doi: 10.1190/1.1441629
[18] Xu X Y, Miller E L, Rappaport C M. Minimum entropy regularization in frequency-wavenumber migration to localize subsurface objects[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(8):1804-1812.
doi: 10.1109/TGRS.2003.813497
[19] 修志杰, 陈洁, 方广有, 等. 基于F-K偏移及最小熵技术的探地雷达成像法[J]. 电子与信息学报, 2007, 29(4):827-830.
[19] Xiu Z J, Chen J, Fang G Y, et al. Ground penetrating radar imaging based on F-K migration and minimum entropy method[J]. Journal of Electronics and Information Technology, 29(4):827-830.
[20] Zhou H L, Wan X, Li W, et al. Combining FK filter with minimum entropy Stolt migration algorithm for subsurface object imaging and background permittivity estimation[J]. Procedia Engineering, 2011, 23:636-641.
doi: 10.1016/j.proeng.2011.11.2558
[21] 吴学礼, 郑文俭, 胡雪松, 等. 基于偏移定位技术的水利探测方法及应用[J]. 河北科技大学学报, 2019, 40(4):317-324.
[21] Wu X L, Zheng W J, Hu X S, et al. Water conservancy detection method and application based on migration locationing technology[J]. Journal of Hebei University of Science and Technology, 2019, 40(4):317-324.
[22] Bradford J H, Privette J, Wilkins D, et al. Reverse-time migration from rugged topography to image ground-penetrating radar data in complex environments[J]. Engineering, 2018, 4(5):661-666.
doi: 10.1016/j.eng.2018.09.004
[23] 王敏玲, 廖天元, 王洪华, 等. 基于 FDTD 的探地雷达三维逆时偏移成像[J]. 地球物理学进展, 2019, 34(4):1671-1678.
[23] Wang M L, Liao T Y, Wang H H, et al. 3D reverse time migration of ground penetrating radar based on finite difference time domain method[J]. Progress in Geophysics, 2019, 34(4):1671-1678.
[24] 薛桂霞, 邓世坤, 刘秀娟. 逆时偏移在探地雷达信号处理中的应用[J]. 煤田地质与勘探, 2004, 32(1):55-57.
[24] Xue G X, Deng S K, Liu X J. An application of reverse-time migration in the ground-penetrating radar data processing[J]. Coal Geology & Exploration, 2004, 32(1):55-57.
[25] 王洪华, 龚俊波, 梁值欢, 等. 基于电磁波衰减补偿的探地雷达三维逆时偏移成像[J]. 地球物理学报, 2021, 64(6):2141-2152.
[25] Wang H H, Gong J B, Liang Z H, et al. Three-dimensional reverse time migration of ground pentrating radar data based on electromagnetic wave attenuated compensation[J]. Chinese Journal of Geophysics, 2021, 64(6):2141-2152.
[26] 王敏玲, 梁值欢, 王洪华, 等. 探地雷达逆时偏移成像方法研究现状及进展[J]. 地球物理学进展, 2019, 34(5):2087-2096.
[26] Wang M L, Liang Z H, Wang H H, et al. Review of reverse time migration in ground penetrating radar[J]. Progress in Geophysics, 2019, 34(5):2087-2096.
[27] 龚俊波, 王洪华, 王敏玲, 等. 逆时偏移在探地雷达数据处理中的应用[J]. 物探与化探, 2019, 43(4):835-842.
[27] Gong J B, Wang H H, Wang M L, et al. The application of reverse time migration to GPR data processing[J]. Geophysical and Geochemical Exploration, 2019, 43(4):835-842.
[28] 朱云峰, 王齐仁, 张启, 等. 基于 FDTD 数值技术分析反向障碍物对探地雷达采集数据的影响[J]. 煤田地质与勘探, 2016, 44(5):149-154.
[28] Zhu Y F, Wang Q R, Zhang Q, et al. FDTD numeric technique-based analysis of the influence of reverse obstacle on data acquisition of ground penetrating radar[J]. Coal Geology & Exploration, 2016, 44(5):149-154.
[29] Wu H S, Barba J. Minimum entropy restoration of star field images[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics), 1998, 28(2):227-231.
doi: 10.1109/3477.662762
[30] 蒋清乐, 卢继平, 孙涛, 等. 基于GPR偏移成像处理的杆塔接地体缺陷检测[J]. 高电压技术, 2021, 47(1):322-330.
[30] Jiang Q L, Lu J P, Sun T, et al. Defect detection of pole tower grounding body based on GPR offset imaging[J]. High Voltage Engineering, 2021, 47(1):322-330.
[31] 林志强, 王磊, 樊斌斌. 基于图像熵的探地雷达 Kirchhoff 偏移成像算法[J]. 火力与指挥控制, 2020, 45(12):97-100.
[31] Lin Z Q, Wang L, Fan B B. Kirchhoff migration imaging algorithm of ground penetrating radar based on image entropy[J]. Fire Control & Command Control, 2020, 45(12):97-100.
[1] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[2] 曾波, 刘硕, 杨军, 冯德山, 袁忠明, 柳杰, 王珣. 地表起伏对地下管线GPR探测的影响[J]. 物探与化探, 2023, 47(4): 1064-1070.
[3] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[4] 徐立, 冯温雅, 姜彦南, 王娇, 朱四新, 覃紫馨, 李沁璘, 张世田. 基于行列方差方法的探地雷达道路数据感兴趣区域自动提取技术[J]. 物探与化探, 2023, 47(3): 804-809.
[5] 冯温雅, 程丹丹, 王成浩, 程星. 基于探地雷达等效采样的时变零偏实时校正方法[J]. 物探与化探, 2023, 47(2): 372-376.
[6] 徐雷良, 赵国勇, 张剑, 钟天淼, 谷佳莹, 游剑, 曲英铭. 绕射波与一次波联合黏声最小二乘逆时偏移[J]. 物探与化探, 2023, 47(1): 91-98.
[7] 王霁川, 谷丙洛, 李振春. 井中地震黏声逆时偏移的井型影响分析[J]. 物探与化探, 2022, 46(5): 1196-1206.
[8] 杨宏伟, 王霁川, 孔庆丰, 谷丙洛, 孙卫国, 李振春. 井中地震粘声逆时偏移成像影响因素分析[J]. 物探与化探, 2022, 46(4): 877-886.
[9] 周东, 刘毛毛, 刘宗辉, 刘保东. 基于瞬时相位余弦的探地雷达多层路面自动检测[J]. 物探与化探, 2022, 46(4): 961-967.
[10] 段莹, 张高成, 谭雅丽. 泌阳凹陷高陡构造带地震成像[J]. 物探与化探, 2021, 45(4): 981-989.
[11] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[12] 蔡连初, 缪念有. 探地雷达宽角反射图形拟合方法[J]. 物探与化探, 2021, 45(1): 239-244.
[13] 刘炜, 王彦春, 毕臣臣, 徐仲博. 基于优化交错网格有限差分法的VSP逆时偏移[J]. 物探与化探, 2020, 44(6): 1368-1380.
[14] 陈紫静, 陈清礼. 瞬变电磁的逆时偏移成像方法[J]. 物探与化探, 2020, 44(6): 1415-1419.
[15] 韩佳明, 仲鑫, 景帅, 刘平. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6): 1476-1481.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com