Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (4): 1055-1063    DOI: 10.11720/wtyht.2021.0055
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验
裴肖明1,2(), 冯国瑞1,2(), 戚庭野1,2
1.太原理工大学 矿业工程学院,山西 太原 030024
2.山西省绿色采矿工程技术研究中心,山西 太原 030024
Physical simulation experiment for detecting water-filled goaf of coal mine under complex conditions bases on transient electromagnetic method
PEI Xiao-Ming1,2(), FENG Guo-Rui1,2(), QI Ting-Ye1,2
1. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2. Research Center of Green Mining Engineering Technology in Shanxi Province, Taiyuan 030024, China
全文: PDF(4751 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

煤矿充水采空区形成后,分布形态各异且位置不明,因此极易造成严重水害事故。为了精准定位充水采空区并研究其电磁响应特征,本文选择神东煤矿1号煤层为工程背景,采用亚克力玻璃架子充当实验台,并使用相似模拟材料充当各岩层设计了不同积水量以及不同垮落岩体存在状态下充水采空区的瞬变电磁探测物理实验。结果表明:当采空区内充水时,感应电动势曲线在衰减过程中会受到低阻效应而产生异常的“上凸”现象,且充水量越大异常幅度越明显。垮落岩体的存在会有限地减弱低阻异常效应。当采空区内未充水时,感应电动势曲线正常衰减,此时垮落岩体产生的影响可忽略不计。本次研究对于煤矿采空区水害防治具有重要意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
裴肖明
冯国瑞
戚庭野
关键词 瞬变电磁法充水采空区物理模拟实验感应电动势衰减曲线    
Abstract

After the formation of water-filled goaf in coal mines, the distribution patterns and locations are different and unclear. Therefore, it can easily cause serious water hazards. In order to accurately locate the water-filled goaf and study its electromagnetic response characteristics, the authors chose the Datong Majiliang coal mine as the engineering background, used acrylic glass shelves as the experimental platform, and took similar simulation materials as each rock layer to design the physical experiment of transient electromagnetic detection in the water-filled goaf under different water accumulation and existence situations of collapsed rock masses. The results demonstrate that, when the goaf is filled with water, the induced electromotive force curve will be affected by the low resistance effect during the attenuation process and produce an abnormal "upward" phenomenon, and the greater the water filling, the more obvious the abnormal amplitude is. The existence of collapsed rock mass will limitedly weaken the abnormal interference of low resistance. When the goaf is not filled with water, the induced electromotive force curve decays normally, and the impact of the collapsed rock mass is negligible.

Key wordstransient electromagnetic method    water-filled goaf    physical simulation experiment    decay electromotive force curve
收稿日期: 2021-01-28      出版日期: 2021-08-20
:  P631.325  
基金资助:国家自然科学基金联合基金重点项目(U1710258);国家自然科学基金联合基金重点项目(U1810120);国家自然科学基金项目(51925402);国家自然科学基金项目(51804208);山西省重点研发计划(社会发展领域)项目(201803D31044)
通讯作者: 冯国瑞
作者简介: 裴肖明(1994-),男,山西朔州人,硕士研究生,主要从事电磁法探测技术研究。Email: pxm2998944218@163.com
引用本文:   
裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
PEI Xiao-Ming, FENG Guo-Rui, QI Ting-Ye. Physical simulation experiment for detecting water-filled goaf of coal mine under complex conditions bases on transient electromagnetic method. Geophysical and Geochemical Exploration, 2021, 45(4): 1055-1063.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.0055      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I4/1055
地层
名称
平均厚度
/m
埋深/m 岩层 岩层地质特征
侏罗系
中、下统
延安组
(J1~2y)
2.90 38.64 细砂岩 细砂岩
20.28 41.54 粉砂岩 多为粉砂岩,极少量细砂
岩,含有植物化石碎片
5.49 61.82 中粗砂岩 主要为中粗砂岩
9.37 67.31 1号煤层 结构简单,全区可采,
为本区主采煤层
8.09 75.40 砂质泥岩 灰黑色砂质泥岩,含
大量植物化石碎片
4.22 79.62 泥岩 泥岩
4.70 84.32 粉砂岩 主要为粉砂岩,
含有植物化石碎片
Table 1  神东煤矿1号煤层地层分布
岩层 层序 铺设高度/m 配比号 砂子/kg 石灰/kg 石膏/kg 水/kg
细砂岩 5 0.03 546 26.19 2.09 3.15 3.15
粉砂岩 4 0.20 637 125.50 6.50 14.50 14.50
中砂岩 3 0.05 537 47.22 2.82 6.61 5.69
2 0.1 873 62.00 5.50 2.25 7.00
砂质泥岩 1 0.08 673 50.64 5.12 2.24 5.76
总量 0.46 311.55 22.03 28.75 36.10
Table 2  岩层相似模拟材料配比
Fig.1  物理模拟系统示意
Fig.3  电阻测试系统示意
模拟岩层 细砂岩 粉砂岩 煤层 中砂岩 砂质泥岩 含水层
电阻率/(Ω·m) (3.4~3.5)×103 (7.6~7.7)×103 (2.5~2.6)×103 (6.8~6.9)×103 (2.6~2.7)×102 1~5
Table 3  各相似模拟试件的电性特征
Fig.4  测线测点布置
Fig.5  不同状态充水采空区的衰减电动势曲线
Fig.6  不同积水量采空区衰减电动势曲线(a)及衰减电动势响应增幅特征(b)
充水状态 采样时间/ms
0.5645 0.7005 0.8695 1.0800 1.3405 1.6640 2.0660 2.5645 3.1840
全充水 3.6301 3.5741 3.5219 3.4630 3.3243 3.1076 2.8268 2.4148 2.0729
充1/2水 3.4773 3.3705 3.2642 3.0884 2.8599 2.5970 2.2564 1.9737 1.7080
未充水 3.2616 3.0930 2.9304 2.6923 2.5167 2.3015 2.0897 1.7868 1.6064
Table 4  不同充水量采空区的衰减电动势响应值
Fig.7  不同垮落体存在状态充水采空区衰减电动势曲线
充水状态 采样时间/ms
0.5645 0.7005 0.8695 1.0800 1.3405 1.6640 2.0660 2.5645 3.1840
全充水 3.6301 3.5741 3.5219 3.4630 3.3243 3.1076 2.8268 2.4148 2.0729
全充水含垮落体 3.5917 3.5320 3.4377 3.3002 3.1049 2.9011 2.6377 2.3024 1.9881
充1/2水 3.4773 3.3705 3.2642 3.0884 2.8599 2.5970 2.2564 1.9737 1.7080
充1/2水含垮落体 3.4071 3.2613 3.0995 2.9220 2.7115 2.4262 2.1357 1.8610 1.6282
Table 5  不同垮落体存在状态充水采空区的衰减电动势响应值
Fig.8  不同充水条件下衰减电动势响应减幅特征
[1] 李琰庆, 赵华杰, 夏抗生. 废弃煤矿诱发的透水机理及防治技术[J]. 煤矿安全, 2020,51(6):87-92.
[1] Li Y Q, Zhao H J, Xia K S. Mechanism and control technology of water inrush caused by bandoned coal mines[J]. Safety in Coal Mines, 2020,51(6):87-92.
[2] 李文平, 乔伟, 李小琴, 等. 深部矿井水害特征、评价方法与治水勘探方向[J]. 煤炭学报, 2019,44(8):2437-2448.
[2] Li W P, Qiao W, Li X Q, et al. Characteristics of water disaster,evaluation methods and exploration direction for controlling groundwater in deep mining[J]. Journal of China Coal Society, 2019,44(8):2437-2448.
[3] 武强, 崔芳鹏, 赵苏启, 等. 矿井水害类型划分及主要特征分析[J]. 煤炭学报, 2013,38(4):561-565.
[3] Wu Q, Cui F P, Zhao S Q, et al. Type classification and main characteristics of mine water disasters[J]. Journal of China Coal Society, 2013,38(4):561-565.
[4] 张银松, 李斌, 张家刘. 瞬变电磁法在水域地质勘察中的应用[J]. 物探与化探, 2016,40(1):160-162.
[4] Zhang Y S, Li B, Zhang J L. The application of the transient electromagnetic method to the waters geological investigation[J]. Geophysical and Geochemical Exploration, 2016,40(1):160-162.
[5] 卢云飞, 薛国强, 邱卫忠, 等. SOTEM研究及其在煤田采空区中的应用[J]. 物探与化探, 2017,41(2):354-359.
[5] Lu Y F, Xue G Q, Qiu W Z, et al. The research on SOTEM and its application in mined-out area of coal mine[J]. Geophysical and Geochemical Exploration, 2017,41(2):354-359.
[6] 姜志海, 焦险峰. 矿井瞬变电磁超前探测物理实验[J]. 煤炭学报, 2011,36(11):1852-1857.
[6] Jiang Z H, Jiao X F. Physical experiment of mine transient electromagnetic advanced detection[J]. Journal of China Coal Society, 2011,36(11):1852-1857.
[7] 焦险峰, 刘志新. 瞬变电磁法浅层分辨率物理模型实验研究[J]. 中国矿业大学学报, 2014,43(4):738-741.
[7] Jiao X F, Liu Z X. Physical model and experimental research on shallow resolution of transient electromagnetic method[J]. Journal of China University of Mining & Technology, 2014,43(4):738-741.
[8] 许时昂, 孙松, 韩鹏飞, 等. 瞬变电磁重叠覆盖超前探水模拟测试研究[J]. 工程地球物理学报, 2014,11(1):40-43.
[8] Xu S A, Sun S, Han P F, et al. Simulation and test study of the overlapping coverage of detecting water in advance by Transient Electromagnetic Method[J]. Chinese Journal of Engineering Geophysics, 2014,11(1):40-43.
[9] 张广博. 掘进工作面富水区瞬变电磁法多分量探测物理模拟及应用[D]. 徐州:中国矿业大学, 2016.
[9] Zhang G B. Physical simulation and application of multi-component Transient Electromagnetic Method in heading faces of water-rich area[D]. Xuzhou:China University of Mining & Technology, 2016.
[10] 邢修举, 吴正飞, 张依瑞, 等. 三维瞬变电磁超前探测技术在隧道探水中的应用[J]. 现代隧道技术, 2020,57(1):162-167.
[10] Xing X J, Wu Z F, Zhang Y R, et al. Application of 3D transient electromagnetic advance detection technology in tunnel water exploration[J]. Modern Tunnelling Technology, 2020,57(1):162-167.
[11] 王国库. 不同含水率采空区瞬变电磁响应特征研究[D]. 北京:煤炭科学研究总院, 2019.
[11] Wang G K. Study on transient electromagnetic response characteristics of goaf with different water content[J]. Beijing:China Coal Research Institute Co.,Ltd., 2019.
[12] 王巍, 韩吉民, 陈剑杰, 等. 起伏地形下隐伏异常体瞬变电磁法探测的模拟实验研究[ C]// 中国地质学会工程地质专业委员会. 第八届全国工程地质大会, 2008.
[12] Wang W, Han J M, Chen J J, et al. Research on model experiment of Transient Electromagnetic Method to detect deep underground cavities in complex terrain[ C]// Geological Society of China Engineering Geology Professional Committee. Proceedings of the 8th National Engineering Geology Conference, Beijing:Editorial Department of Journal of Engineering Geology , 2008.
[13] 高彬. 矿井多通道瞬变电磁响应特征研究[D]. 徐州:中国矿业大学, 2019.
[13] Gao B. Study on the characteristics of mine multi-channel transient electromagnetic response[D]. Xuzhou:China University of Mining & Technology, 2019.
[14] 陈载林. 瞬变电磁法几种规则形体的物理模拟实验[J]. 物探与化探, 2013,37(6):1092-1095.
[14] Chen Z L. Physical simulation experiments on several regular shapes of Transient Electromagnetic Method[J]. Geophysical and Geochemical Exploration, 2013,37(6):1092-1095.
[15] 王欣. 曙光煤矿瞬变电磁超前探测物理模拟试验研究[J]. 机械管理开发, 2018,33(7):143-144,147.
[15] Wang X. Experimental study on physical simulation of Transient Electromagnetic advanced detection in Shuguang Coal Mine[J]. Mechanical Management and Development, 2018,33(7):143-144,147.
[16] 蒋邦远. 实用近区磁源瞬变电磁法勘探[M]. 北京: 地质出版社, 1998.
[16] Jiang B Y. Applied near zone magnetic source transient electro-magnetic exploration[M]. Beijing: Geological Publishing House, 1998.
[17] 刘志新, 刘树才, 刘仰光. 矿井富水体的瞬变电磁场物理模型实验研究[J]. 岩石力学与工程学报, 2009,28(2):259-266.
[17] Liu Z X, Liu S C, Liu Y G. Research on transient electromagnetic field of mine water-bearing structure by physical model experiment[J]. Chinese Journal of Rock Mechanics and Engineering, 2009,28(2):259-266.
[18] 姚琦, 冯涛, 王卫军, 等. 矿山开采相似材料配比及力学试验研究[J]. 安全与环境学报, 2017,17(6):2129-2134.
[18] Yao Q, Feng T, Wang W J, et al. On preparing the materials as close as possible in the experimental ratio and mechanical properties with those gained from mining[J]. Journal of Safety and Environment, 2017,17(6):2129-2134.
[19] 黄庆享, 胡火明. 黏土隔水层的应力应变全程相似模拟材料和配比实验研究[J]. 采矿与安全工程学报, 2017,34(6):1174-1178.
[19] Huang Q X, Hu H M. Experimental study of simulation material and matching for whole stress and strain process of clay aquiclude[J]. Journal of Mining & Safety Engineering, 2017,34(6):1174-1178.
[1] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[2] 张莹莹. 电性源瞬变电磁法综述[J]. 物探与化探, 2021, 45(4): 809-823.
[3] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[4] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[5] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
[6] 陈健强, 李雁川, 田浩, 李汉超. 含水采空区全空间瞬变电磁响应分析[J]. 物探与化探, 2021, 45(2): 546-550.
[7] 张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021, 45(1): 102-113.
[8] 魏海民, 李星, 孙帮涛, 周胜, 牛杰. 地球物理方法在帷幕注浆治水中的探测分析[J]. 物探与化探, 2021, 45(1): 245-251.
[9] 胡佳豪, 李貅, 刘航, 胡伟明, 岳鑫. TBM机施工隧道瞬变电磁超前探测研究[J]. 物探与化探, 2020, 44(5): 1183-1189.
[10] 陈大磊, 陈卫营, 郭朋, 王润生, 王洪军, 张超, 马启合, 贺春燕. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5): 1226-1232.
[11] 郭嵩巍, 刘小畔, 郑凯, 张磊. 基于全区视电阻率的瞬变电磁一维Occam反演中雅克比矩阵的解析算法[J]. 物探与化探, 2020, 44(3): 559-567.
[12] 崔方智, 周韬, 张兵. 煤层中CO2注入运移瞬变电磁法监测技术探索[J]. 物探与化探, 2020, 44(3): 573-581.
[13] 黄威, 贲放, 李军峰, 殷长春, 胥值礼, 刘俊杰. 航空瞬变电磁数据背景场去除研究[J]. 物探与化探, 2020, 44(3): 672-676.
[14] 张文伟, 底青云, 耿启立, 雷达, 王中兴, 缪佳佳. 基于数字递归陷波的多通道瞬变电磁法周期噪声去除研究[J]. 物探与化探, 2020, 44(2): 278-289.
[15] 王玉和, 崔增斌, 李春朋. 基于物探结果分析采动对急倾斜煤层底板突水影响[J]. 物探与化探, 2019, 43(6): 1399-1403.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com