Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (2): 372-376    DOI: 10.11720/wtyht.2023.2657
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于探地雷达等效采样的时变零偏实时校正方法
冯温雅(), 程丹丹, 王成浩, 程星
中国电波传播研究所,山东 青岛 266107
A real-time correction method based on time-varying zero offset for the equivalent sampling of ground penetrating radars
FENG Wen-Ya(), CHENG Dan-Dan, WANG Cheng-Hao, CHENG Xing
China Research Institute of Radio Propagation,Qingdao 266107,China
全文: PDF(1781 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

探地雷达系统的温漂现象、有耗媒质的低通效应以及天线与地面间耦合性的下降会导致回波变形,使有效雷达回波与零偏分量混叠,不利于弱小信号检测。传统的前端修正方法和后处理方法,旨在提高发射效率,去除杂波噪声,并未改善系统的信噪比和灵敏度。因此,该文采用时变零偏实时校正方法对等效采样电路进行改进,单独控制每个采样的零偏系数,并且每次采样实时更新叠代,避免将直流、低频成分与有效信号同时送入后续程控放大电路,保证了弱信号的正确采集及系统的动态范围。实验验证了该方法的有效性及可行性,已应用于新型号数字化探地雷达产品。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯温雅
程丹丹
王成浩
程星
关键词 探地雷达等效采样时变零偏实时校正    
Abstract

Echoes can be distorted due to the temperature drift of the ground penetrating radar (GPR) system,the low-pass effect of lossy media,and the decline in the coupling between the antenna and the ground.The mixing of effective radar echoes and zero-offset components makes it difficult to detect weak signals.The conventional front-end correction and post-processing methods,which aim to improve the transmission efficiency and remove the clutter noise,fail to improve the signal-to-noise ratio (SNR) and sensitivity of the system.To overcome these obstacles,this study improved the equivalent sampling circuit using a real-time correction method based on time-varying zero offset.Specifically,the zero-offset coefficient of each sampling was controlled separately and was updated in real time on each sampling.No DC and low-frequency components were sent into the subsequent programmable amplifier along with effective signals,ensuring the correct acquisition of weak signals and the dynamic range of the system.Experiments have proved the validity and feasibility of this method,which has been applied to a new type of digital GPR product.

Key wordsground penetrating radar    equivalent sampling    time-varying zero offset    real-time correction
收稿日期: 2021-12-21      修回日期: 2022-11-28      出版日期: 2023-04-20
ZTFLH:  TN957.5  
基金资助:国家重点研发计划项目(2018YFC0824603)
引用本文:   
冯温雅, 程丹丹, 王成浩, 程星. 基于探地雷达等效采样的时变零偏实时校正方法[J]. 物探与化探, 2023, 47(2): 372-376.
FENG Wen-Ya, CHENG Dan-Dan, WANG Cheng-Hao, CHENG Xing. A real-time correction method based on time-varying zero offset for the equivalent sampling of ground penetrating radars. Geophysical and Geochemical Exploration, 2023, 47(2): 372-376.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.2657      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I2/372
Fig.1  等效采样时变零偏校正电路框图
Fig.2  等效采样时变零偏示意
Fig.3  时变零偏实时校正算法框图
Fig.4  400 MHz天线实测二维剖面数据对比
a—无零偏校正;b—固定零偏校正;c—时变零偏实时校正
Fig.5  400 MHz天线实测单道数据对比
Fig.6  400 MHz天线实测单道数据频谱对比
[1] Niklas A, Jens T. Ground-penetrating radar surveying using antennas with different dominant frequencies[C]// 18th International Conference on Ground Penetrating Radar, 2020.
[2] Che M, Ariffuddin J, Maryanti R, et al. Frequency based signal processing technique for pulse modulation ground penetrating radar system[J]. International Journal of Electrical and Computer Engineering, 2021, 11(5):4104-4112.
[3] Cao Q, Al-Qadi I L. Signal stability and the height-correction method for ground-penetrating Radar In Situ Asphalt concrete density prediction[J]. Transportation Research Record Journal of the Transportation Research Board, 2021, 4(2):1-12.
[4] Arvind S, Phong N, Kenneth A. A highly-digital multi-antenna ground-penetrating radar(GPR) system[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 26(5):94-109.
[5] Fiseha N B, Yeong T C, Sung J L. Development of GPR device and analysis method to detect thickness of Ballast layer[J]. Journal of the Korean Society for Railway, 2020, 23(3):269-278.
doi: 10.7782/JKSR.2020.23.3.269
[6] Surajit K. A compact uniplanar ultra-wideband frequency selective surface for antenna gain improvement and ground penetrating radar application[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 28(6):22-36.
[7] 张斯薇, 吴荣新, 韩子傲, 等. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2):496-501.
[7] Zhang S W, Wu R X, Han Z A, et al. The application of bilateral filtering to denoise processing of ground penetrating radar data[J]. Geophysical and Geochemical Exploration, 2021, 45(2):496-501.
[8] 王超, 沈斐敏. 小波变换在探地雷达弱信号去噪中的研究[J]. 物探与化探, 2015, 39(2):421-424.
[8] Wang C, Shen F M. Study of wavelet transform in ground penetration radar weak signal denoising[J]. Geophysical and Geochemical Exploration, 2015, 39(2):421-424.
[9] Wenchao H, Tong H, Hainan K, et al. Joint time-frequency analysis of ground penetrating radar data based on variational mode decomposition[J]. Journal of Applied Geophysics, 2020, 23(7):164-181.
[10] Mansi A H, Castillo M P, Bernasconi G. Controlled laboratory test for the investigation of LNAPL contamination using a 2.0 GHz ground penetrating radar[J]. Bollettino Di Geofisica Teorica Ed Applicata, 2017, 58(3):169-180.
[11] Yang J, Yun L D. 2D wavelet decomposition and F-K migration for identifying fractured rock areas using Ground Penetrating Radar[J]. Remote Sensing, 2021, 13(6):2280-2299.
doi: 10.3390/rs13122280
[12] Christine D, Sajad J. Resolution enhancement of deconvolved ground penetrating radar images using singular value decomposition[J]. Journal of Applied Geophysics, 2021, 25(6):193-200.
[13] 薛策文, 冯晅, 李晓天, 等. 全极化探地雷达多极化数据融合分析研究[J]. 雷达学报, 2021, 10(1):74-85.
[13] Xue C W, Feng X, Li X T, et al. Multi-polarization data fusion analysis of full-polarimetric ground penetrating radar[J]. Journal of Radars, 2021, 10(1):74-85.
[14] Brocker B, Dowdy J L, Anderson D T. Generative adversarial networks for ground penetrating radar in hand held explosive hazard detection[C]// Detection and Sensing of Mines,Explosive Objects,and Obscured Targets, 2018.
[15] 齐轩晨. 面向道路检测的探地雷达系统设计与实现[D]. 南京: 南京邮电大学, 2019.
[15] Qi X C. Design and implementation of ground penetrating radar system for road detection[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019.
[16] 周炀. 基于FPGA的浅地表电磁探测实时数据处理技术研究[D]. 长春: 吉林大学, 2020.
[16] Zhou Y. Researh on the real-time data processing technology for shallow surface electromagnetic detection based on FPGA[D]. Changchun: Jilin University, 2020.
[17] 何兴坤. 单通道脉冲探地雷达系统软件设计与开发[D]. 武汉: 华中科技大学, 2019.
[17] He X K. Software design and development of single channel impulse ground penetrating radar system[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[1] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[2] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[3] 曾波, 刘硕, 杨军, 冯德山, 袁忠明, 柳杰, 王珣. 地表起伏对地下管线GPR探测的影响[J]. 物探与化探, 2023, 47(4): 1064-1070.
[4] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[5] 徐立, 冯温雅, 姜彦南, 王娇, 朱四新, 覃紫馨, 李沁璘, 张世田. 基于行列方差方法的探地雷达道路数据感兴趣区域自动提取技术[J]. 物探与化探, 2023, 47(3): 804-809.
[6] 周东, 刘毛毛, 刘宗辉, 刘保东. 基于瞬时相位余弦的探地雷达多层路面自动检测[J]. 物探与化探, 2022, 46(4): 961-967.
[7] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[8] 蔡连初, 缪念有. 探地雷达宽角反射图形拟合方法[J]. 物探与化探, 2021, 45(1): 239-244.
[9] 韩佳明, 仲鑫, 景帅, 刘平. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6): 1476-1481.
[10] 李靖翔, 赵明, 赖皓, 熊双成, 唐阳. 地下电缆的探地雷达图像特征与识别技术[J]. 物探与化探, 2020, 44(6): 1482-1489.
[11] 高阳, 彭明涛, 杨培胜, 王恒, 王平, 李海. 三峡库区巫峡段高陡峡谷区危岩裂隙带探地雷达探测[J]. 物探与化探, 2020, 44(2): 441-448.
[12] 王飞详, 梁风, 左双英. 基于探地雷达岩体浅部节理面识别的模型实验[J]. 物探与化探, 2020, 44(1): 185-190.
[13] 许泽善, 周江涛, 刘四新, 曾贤德. 三维步进频率探地雷达在沥青层厚度检测中的应用[J]. 物探与化探, 2019, 43(5): 1145-1150.
[14] 王成浩, 程丹丹. 基于马氏距离模板特征的地雷目标识别研究[J]. 物探与化探, 2019, 43(4): 899-903.
[15] 龚俊波, 王洪华, 王敏玲, 罗泽明. 逆时偏移在探地雷达数据处理中的应用[J]. 物探与化探, 2019, 43(4): 835-842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com