Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 804-809    DOI: 10.11720/wtyht.2023.1161
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于行列方差方法的探地雷达道路数据感兴趣区域自动提取技术
徐立1,2(), 冯温雅3, 姜彦南1,2(), 王娇1,2, 朱四新4, 覃紫馨1,2, 李沁璘1,2, 张世田3
1.桂林电子科技大学 信息与通信学院,广西 桂林 541004
2.广西无线宽带通信与信号处理重点实验室,广西 桂林 541000
3.中国电波传播研究所,山东 青岛 266107
4.华北水利水电大学 地球科学与工程学院,河南 郑州 450011
A technique for automatically extracting regions of interest from ground penetrating radar data of roads based on the row-column variance method
XU Li1,2(), FENG Wen-Ya3, JIANG Yan-Nan1,2(), WANG Jiao1,2, ZHU Si-Xin4, QIN Zi-Xin1,2, LI Qin-Lin1,2, ZHANG Shi-Tian3
1. School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China
2. Guangxi Key Laboratory of Wireless Wideband Communication & Signal Processing,Guilin 541000,China
3. China Research Institute of Radio Propagation,Qingdao 266107,China
4. College of Geosciences and Engineering,North China University of Water Resources and Electric Power,Zhengzhou 450011,China
全文: PDF(4363 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

随着经济和社会的快速发展,道路承受的负载急剧增大,使得道路内部逐渐产生一系列的病害。探地雷达(ground penetrating radar,GPR)是一种无损探测技术,可将道路下方目标的回波信息呈现在雷达剖面图上,其中的空洞、脱空、疏松体等病害信息构成了探地雷达道路数据的感兴趣区域(region of interest,ROI)。传统的人工提取ROI方法对人员的技术要求高,同时针对海量数据的人工识别给一般人员的精力提出了不小的挑战。为此,本文提出一种通过在行列方差基础上加入阈值分割数据的方法,实现ROI的自动提取。实验结果表明,提出的方法有效地提取出多类型、多目标ROI位置信息。该方法在提高探地雷达道路检测效率方面具有较大的应用潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐立
冯温雅
姜彦南
王娇
朱四新
覃紫馨
李沁璘
张世田
关键词 探地雷达探地雷达剖面图行列方差阈值分割ROI    
Abstract

With the rapid development of the economy and society,traffic loads have increased sharply,gradually causing a series of pavement diseases.Ground penetrating radar (GPR),which is a non-destructive testing technique,can present the echo information of subsurface targets on the GPR profile.The echo information of diseases,such as voids,cavities underneath the pavement,and loosely infilled voids,constitutes a region of interest(ROI) on the GPR profile.The traditional manual ROI extraction method features high technical requirements and high laborious intensity due to massive data.Therefore,this study proposed an automatic ROI extraction method that combines the threshold segmentation data and the row-column variance.The experimental results show that the method proposed in this study can effectively extract the location information of multi-type and multi-target ROIs.This method has great potential for improving road detection efficiency based on GPR.

Key wordsground penetrating radar    ground penetrating radar profile    row-column variance    threshold segmentation    ROI
收稿日期: 2022-04-13      修回日期: 2023-03-21      出版日期: 2023-06-20
ZTFLH:  P631.4  
基金资助:广西自然科学基金项目(2019GXNSFFA245002);电波环境特性及模化技术重点实验室基金项目(202003007);广西无线宽带通信与信号处理重点实验室基金项目(GXKL06200126);桂林电子科技大学研究生教育创新计划资助项目(2021YCXB04)
通讯作者: 姜彦南(1980-),男,博士,教授,研究方向为电磁辐射与散射、探地雷达应用技术等。Email:ynjiang@guet.edu.cn
作者简介: 徐立(1994-),男,硕士研究生,研究方向为信号与信息处理。Email:1442510164@qq.com
引用本文:   
徐立, 冯温雅, 姜彦南, 王娇, 朱四新, 覃紫馨, 李沁璘, 张世田. 基于行列方差方法的探地雷达道路数据感兴趣区域自动提取技术[J]. 物探与化探, 2023, 47(3): 804-809.
XU Li, FENG Wen-Ya, JIANG Yan-Nan, WANG Jiao, ZHU Si-Xin, QIN Zi-Xin, LI Qin-Lin, ZHANG Shi-Tian. A technique for automatically extracting regions of interest from ground penetrating radar data of roads based on the row-column variance method. Geophysical and Geochemical Exploration, 2023, 47(3): 804-809.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1161      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/804
Fig.1  雷达剖面图及行列方差分布
a—原始雷达B-scan图像;b—列方差与单位阶跃;c—目标1行方差与单位阶跃;d—目标2行方差与单位阶跃
Fig.2  行列方差ROI提取及标注
a—ROI标注;b—1号目标体ROI;c—2号目标体ROI
Fig.3  算法流程
Fig.4  存在多目标的ROI提取
a—雷达B-scan原始图像;b—ROI提取效果
目标类型 目标编号 目标位置
空洞 1 (108,71;219,418)
管线 2 (750,124;794,337)
钢筋网 3 (1077,91;1142,341)
雨污井 4 (1741,67;1865,511)
疏松体 5 (2147,78;2640,487)
Table 1  多类型、多目标及其位置信息
数据量/采样点×道号 T0 T η/%
512×20000 24 23 95.8
Table 2  ROI检测率
目标类型 目标编号
空洞、脱空 12, 23, 25, 28, 36, 37, 39, 40, 46
疏松体 3, 17, 29, 31, 35, 38, 43
钢筋网 15, 22
雨污井 2, 18, 42
管线 30, 41
Table 3  ROI对应目标类型及其自动提取编号
Fig.5  青岛市江西路B-scan图及对于提取的ROI
a—青岛市江西路B-scan(插图为自动提取遗漏的ROI);b—自动提取ROI
[1] Griffiths H, Knott P, Koch W. Christian Hulsmeyer:Invention and demonstration of radar,1904[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(9):56-60.
doi: 10.1109/MAES.2019.2934814
[2] 白冰, 周健. 探地雷达测试技术发展概况及其应用现状[J]. 岩石力学与工程学报, 2001, 20(4):527-531.
[2] Bai B, Zhou J. Development and application of ground penetrating radar[J]. Journal of Rock Mechanics and Engineering, 2001, 20(4):527-531.
[3] 曾昭发, 刘四新, 冯晅. 探地雷达原理与应用[M]. 北京: 电子工业出版社, 2010.
[3] Zeng Z F, Liu S X, Feng Y. Principle and application of ground penetrating radar[M]. Beijing: Electronic Industry Press, 2010.
[4] Baek J, Yoon J S, Lee C M, et al. A case study on detection of subsurface cavities of urban roads using ground-coupled GPR[C]// 2018 17th International Conference on Ground Penetrating Radar (GPR),2018.
[5] Shi X, Cheng D, Song Z, et al. A real-time method for landmine detection using vehicle array GPR[C] // 2018 17th International Conference on Ground Penetrating Radar (GPR),2018.
[6] Ciampoli L B, Benedetto A, Tosti F. The archaeo track project:Use of ground-penetrating radar for preventive conservation of buried archaeology towards the development of a virtual museum[C]// 2018 Metrology for Archaeology and Cultural Heritage(MetroArchaeo),2018.
[7] 中华人民共和国住房和城乡建设部. JGJ/T 437-2018 城市地下病害体综合探测与风险评估技术标准[S]. 北京:中国建筑工业出版社, 2018.
[7] Ministry of Housing and Urban-Rural Development of the People's Republic of China. JGJ/T 437-2018 Technical Standard for Comprehensive Detection and Risk Assessment of Urban Underground Diseases [S].Beijing:China Construction Industry Press, 2018.
[8] 冯德山, 杨子龙. 基于深度学习的隧道衬砌结构物探地雷达图像自动识别[J]. 地球物理学进展, 2020, 35(4):1552-1556.
[8] Feng D S, Yang Z L. Automatic recognition of GPR image of tunnel lining structure based on deep learning[J]. Progress in Geophysics, 2020, 35(4):1552-1556.
[9] 刘普, 焦良葆, 曹雪虹. 基于行方差的GPR图像感兴趣区域提取定位方法[J]. 软件导刊, 2020, 19(6):218-222.
[9] Liu P, Jiao L B, Cao X H. A method of extracting and locating regions of interest in GPR images based on row variance[J]. Software Guide, 2020, 19(6):218-222.
[10] 张旭, 龚钢军, 郝建红. 探地雷达目标回波信号双曲线提取算法研究[J]. 计算机测量与控制, 2016, 24(10):247-250.
[10] Zhang X, Gong G J, Hao J H. Research on hyperbolic extraction algorithm of ground penetrating radar target echo signal[J]. Computer Measurement and Control, 2016, 24(10):247-250
[11] Mertens L, Persico R, Matera L, et al. Automated detection of reflection Hyperbolas in complex GPR images with no a priori knowledge on the medium[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54:580-596.
doi: 10.1109/TGRS.2015.2462727
[12] Ma X, Liu H, Wang M L, et al. Automatic detection of steel rebar in bridge decks from ground penetrating radar data[J]. Journal of Applied Geophysics, 2018, 158:93-102.
doi: 10.1016/j.jappgeo.2018.07.010
[13] 林春旭. 基于探地雷达和深度学习的地下目标智能探测与定位方法[D]. 广州: 广州大学, 2020.
[13] Lin C X. Intelligent detection and location method of underground target based on ground penetrating radar and deep learning[D]. Guangzhou: Guangzhou University, 2020.
[14] 张军伟, 刘秉峰, 李雪, 等. 基于GPRMax2D的地下管线精细化探测方法[J]. 物探与化探, 2019, 43(2):435-440.
[14] Zhang J W, Liu B F, Li X, et al. Refined detection method of underground pipeline based on GPRMax2D[J]. Geophysical and Geochemical Exploration, 2019, 43(2):435-440.
[15] 李靖翔, 赵明, 赖皓, 等. 地下电缆的探地雷达图像特征与识别技术[J]. 物探与化探, 2020, 44(6):1482-1489.
[15] Li J X, Zhao M, Lai H, et al. Imaging detection and recognition technology of underground cable based on ground penetrating radar[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1482-1489.
[16] 吴正平, 马占稳, 颜华, 等. 基于图像的多方向灰度波动局部阈值分割方法[J]. 激光与光电子学进展, 2020, 57(6):189-194
[16] Wu Z P, Ma Z W, Yan H, et al. Image-based local threshold segmentation method for multi-directional gray fluctuation[J]. Advances in Laser and Optoelectronics, 2020, 57(6):189-194
[1] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[2] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[3] 曾波, 刘硕, 杨军, 冯德山, 袁忠明, 柳杰, 王珣. 地表起伏对地下管线GPR探测的影响[J]. 物探与化探, 2023, 47(4): 1064-1070.
[4] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[5] 冯温雅, 程丹丹, 王成浩, 程星. 基于探地雷达等效采样的时变零偏实时校正方法[J]. 物探与化探, 2023, 47(2): 372-376.
[6] 刘志同, 陈儒军, 崔益安, 王小杰, 王子辉, 刘瑨. 基于Android平台的192道自然电位监测仪测控软件开发[J]. 物探与化探, 2022, 46(6): 1523-1527.
[7] 周东, 刘毛毛, 刘宗辉, 刘保东. 基于瞬时相位余弦的探地雷达多层路面自动检测[J]. 物探与化探, 2022, 46(4): 961-967.
[8] 王博, 郭良辉, 崔亚彤, 王祥. 三维Tesseroid网格模型重力异常正演方法及并行算法[J]. 物探与化探, 2021, 45(6): 1597-1605.
[9] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[10] 蔡连初, 缪念有. 探地雷达宽角反射图形拟合方法[J]. 物探与化探, 2021, 45(1): 239-244.
[11] 韩佳明, 仲鑫, 景帅, 刘平. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6): 1476-1481.
[12] 李靖翔, 赵明, 赖皓, 熊双成, 唐阳. 地下电缆的探地雷达图像特征与识别技术[J]. 物探与化探, 2020, 44(6): 1482-1489.
[13] 王祥, 郭良辉. 球坐标系密度界面反演方法及在华南大陆的应用[J]. 物探与化探, 2020, 44(5): 1161-1171.
[14] 高阳, 彭明涛, 杨培胜, 王恒, 王平, 李海. 三峡库区巫峡段高陡峡谷区危岩裂隙带探地雷达探测[J]. 物探与化探, 2020, 44(2): 441-448.
[15] 王飞详, 梁风, 左双英. 基于探地雷达岩体浅部节理面识别的模型实验[J]. 物探与化探, 2020, 44(1): 185-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com