Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 575-583    DOI: 10.11720/wtyht.2023.1474
  “2022年重磁方法理论及应用研究专题研讨会”专栏 本期目录 | 过刊浏览 | 高级检索 |
基于不等式和Gramian约束的MT和重力正则化联合反演
陈晓1,2(), 曾志文3(), 邓居智1,2, 张志勇1,2, 陈辉1,2, 余辉1,2, 王彦国1,2
1.东华理工大学 核资源与环境省部共建国家重点实验室,江西 南昌 330013
2.东华理工大学 地球物理与测控技术学院,江西 南昌 330013
3.吉林大学 地球探测科学与技术学院,吉林 长春 130026
Regularized joint inversion of magnetotelluric and gravity data based on inequality and Gramian constraints
CHEN Xiao1,2(), ZENG Zhi-Wen3(), DENG Ju-Zhi1,2, ZHANG Zhi-Yong1,2, CHEN Hui1,2, YU Hui1,2, WANG Yan-Guo1,2
1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
2. School of Geophysics and Measurement-control Technology, East China University of Technology, Nanchang 330013, China
3. College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China
全文: PDF(4544 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

基于Gramian约束的正则化联合反演是目前地球物理联合反演领域的研究热点。鉴于正则化项和约束项权重系数选择的困难性,有必要在正则化联合反演中引入不等式约束。本文以基于Gramian约束的大地电磁测深法(MT)和重力正则化联合反演为例,对比了惩罚函数法和转换函数法在联合反演中的应用效果,并开展了江西相山某测线的实测资料处理。模型试验表明,惩罚函数法和转换函数法可以有效地将物性参数约束在一定范围之内,惩罚函数法具有更高的灵活性但需要人为设置惩罚函数的权重系数。实测数据的处理表明,基于不等式和Gramian约束的联合反演具有较高的实用性,提高了地球物理解释的精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈晓
曾志文
邓居智
张志勇
陈辉
余辉
王彦国
关键词 联合反演Gramian约束不等式约束正则化江西相山    
Abstract

Regularized joint inversion based on Gramian constraints is a hot research topic in the field of geophysical joint inversion. Given the difficulty in selecting weighted factors of the regularization and constraint items, it is necessary to introduce inequality constraints into the regularized joint inversion. To investigate the regularized joint inversion of magnetotelluric (MT) and gravity data based on Gramian constraints, this study compared the application effects of the penalty function method and the transform function method in the joint inversion and processed the measured data of a survey line in Xiangshan, Jiangxi Province. According to the results from model experiments, both methods can effectively constrain petrophysical parameters, and the penalty function method has higher flexibility but requires the artificial setting of the weighted factors. Moreover, the processing of the measured data shows that the joint inversion based on inequality and Gramian constraints is highly practical and can improve the precision of geophysical interpretation.

Key wordsjoint inversion    Gramian constraint    inequality constraint    regularized    Xiangshan, Jiangxi
收稿日期: 2022-09-21      修回日期: 2023-01-20      出版日期: 2023-06-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(42064008);国家自然科学基金项目(41604104);国家自然科学基金项目(42130811);国家自然科学基金项目(42164008);国家自然科学基金项目(41864004);江西省自然科学基金项目(20224BAB203046);江西省自然科学基金项目(20171BAB213031);江西省自然科学基金项目(20204BCJL23058);江西省地质局科技研究项目(2023JXDZKJKY03)
通讯作者: 曾志文(1995-),男,博士研究生,主要研究方向为地球物理反演及联合反演。Email:zengzwxs@hotmail.com
作者简介: 陈晓(1986-),男,博士,副教授,主要研究方向为地球物理反演及联合反演。Email:dwjhtj@hotmail.com
引用本文:   
陈晓, 曾志文, 邓居智, 张志勇, 陈辉, 余辉, 王彦国. 基于不等式和Gramian约束的MT和重力正则化联合反演[J]. 物探与化探, 2023, 47(3): 575-583.
CHEN Xiao, ZENG Zhi-Wen, DENG Ju-Zhi, ZHANG Zhi-Yong, CHEN Hui, YU Hui, WANG Yan-Guo. Regularized joint inversion of magnetotelluric and gravity data based on inequality and Gramian constraints. Geophysical and Geochemical Exploration, 2023, 47(3): 575-583.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1474      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/575
Fig.1  模型试验1不同方案的联合反演结果
a—设计的剩余密度模型;b—设计的电阻率模型;c—方案1剩余密度结果;d—方案1电阻率结果;e—方案2剩余密度结果;f—方案2电阻率结果;g—方案3剩余密度结果;h—方案3电阻率结果;i—重力异常拟合曲线
Fig.2  模型试验2不同方案的联合反演结果
a—方案1剩余密度结果;b—方案1电阻率结果;c—方案2剩余密度结果;d—方案2电阻率结果;e—方案3剩余密度结果;f—方案3电阻率结果;g—重力异常拟合曲线
Fig.3  相山火山盆地某测线位置
岩性 σ平均/(g·cm-3) ρ/ (Ω·m)
碎斑熔岩 2.63 (2.61~2.65),低 6000 (400~400000),大部分>5000
流纹英安岩 2.69 (2.65~2.72),中等 2685,大部分<5000,偏低
变质岩 2.77 (>2.72),高 低阻样本为3451,高阻样本为31092
Table 1  相山火山盆地岩石物性统计结果
Fig.4  某MT测线3D电阻率反演结果
Fig.5  不同方案的联合反演结果
a—方案1的剩余密度结果;b—方案2的剩余密度结果;c—方案1的重力异常拟合曲线;d—方案2的重力异常拟合曲线;e—方案1联合反演结果耦合;f—方案2联合反演结果耦合
Fig.6  3D MT反演结果和联合反演的密度结果对比
a—3D MT反演结果;b—联合反演的剩余密度结果
[1] Sun J J, Li Y G. Joint inversion of multiple geophysical data using guided fuzzy c-means clustering[J]. Geophysics, 2016, 81(3):ID37-ID57.
doi: 10.1190/geo2015-0457.1
[2] 陈晓, 于鹏, 邓居智, 等. 基于宽范围岩石物性约束的大地电磁和地震联合反演[J]. 地球物理学报, 2016, 59(12):4690-4700.
[2] Chen X, Yu P, Deng J Z, et al. Joint inversion of MT and seismic data based on wide-range constraints[J]. Chinese Journal of Geophysics, 2016, 59(12),4690-4700.
[3] Gallardo L A, Meju M A. Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data[J]. Geophysical Research Letters, 2003, 30(13):11-14.
doi: 10.1029/2001GL014464
[4] Molodtsov D M, Kashtan B, Rostov Y. Joint inversion of seismic and magnetotelluric data with structural constraint based on dot product of image gradients[C]// SEG Expanded Abstracts, 2011:740-744.
[5] Zhdanov M S, Gribenko A, Wilson G. Generalized joint inversion of multimodal geophysical data using Gramian constraints[J]. Geophysical Research Letters, 2012, 39:L09301.
[6] Zhu Y, Zhdanov M S. Gramian constraints in the joint inversion of airborne gravity gradiometry and magnetic data[C]// SEG Expanded Abstract, 2013:1166-1170.
[7] Lin W, Zhdanov M S. The Gramian method of joint inversion of the gravity gradiometry and seismic data[J]. Pure and Applied Geophysics, 2019, 176(4):1659-1672.
doi: 10.1007/s00024-018-02088-x
[8] Zhu Y. Joint inversion of airborne magnetic and electromagnetic data:Case study in the Northwest Territories of Canada[C]// SEG Expanded Abstract, 2015:864-868.
[9] Jorgensen M. Joint 3D inversion of gravity and MT data using Gramian constraints:A case study from Yellowstone[C]// SEG Expanded Abstract, 2018:2307-2311.
[10] Ogunbo J N. Dotting the i and crossing the T of the entire MiT resistivity community by the Gramian constrained joint EM/electrical inversion[C]// SEG Expanded Abstract, 2018:2587-2591.
[11] Zhdanov M S. Joint inversion of multimodal data using focusing stabilizers and Gramian constraints[C]// SEG Expanded Abstracts, 2018:1430-1434.
[12] Carter-McAuslan A, Lelievre P G, Farquharson C G. A study of fuzzy c-means coupling for joint inversion,using seismic tomography and gravity data test scenarios[J]. Geophysics, 2015, 80(1):W1-W15.
doi: 10.1190/geo2014-0056.1
[13] Moorkamp M, Roberts A W, Jegen M, et al. Verification of velocity-resistivity relationships derived from structural joint inversion with borehole data[J]. Geophysical Research Letters, 2013, 40(14),3596-3601.
doi: 10.1002/grl.50696
[14] Lin W, Zhdanov M S. Joint multinary inversion of gravity and magnetic data using Gramian constraints[J]. Geophysical Journal International, 2018, 215(3),1540-1557.
[15] Li Y G, Oldenburg W D. Fast inversion of large-scale magnetic data using wavelet transform and a logarithmic barrier method[J]. Geophysics Journal International, 2003, 152(2):251-265.
doi: 10.1046/j.1365-246X.2003.01766.x
[16] Commer M, Newman G A. New advances in three-dimensional controlled-source electromagnetic inversion[J]. Geophysical Journal International, 2008, 172(2):513-535.
doi: 10.1111/gji.2008.172.issue-2
[17] 王智, 潘和平, 骆玉虎, 等. 基于不等式约束的井地电阻率法三维非线性共轭梯度反演研究[J]. 地球物理学进展, 2016, 31(1):360-370.
[17] Wang Z, Pan H P, Luo Y L, et al. 3D hole-to surface resistivity inversion with nonlinear conjugate gradients method under the constraint of inequality[J]. Progress in Geophysics, 2016, 31(1):360-370.
[18] Hu W, Abubakar A, Habashy T M. Joint electromagnetic and seismic inversion using structural constraints[J]. Geophysics, 2009, 74(6):R99-R109.
doi: 10.1190/1.3246586
[19] 郭一豪, 陈晓, 曾志文. 基于Gramian和惩罚函数约束的MT和重力联合反演[J]. 江西科学, 2021, 39(1):94-98.
[19] Guo Y H, Chen X, Zeng Z W. Joint inversion of MT and gravity based on Gramian and penalty function constraints[J]. Jiangxi Science, 2021, 39(1):94-98.
[20] 刘星, 邓居智, 陈晓. 基于不等式约束的重力三维聚焦反演[J]. 科学技术与工程, 2020, 20(30):12332-12341.
[20] Liu X, Deng J Z, Chen X. Three-dimensional focusing inversion to gravity data based on inequality constraints[J]. Science Technology and Engineering, 2020, 20(30):12332-12341.
[21] 余辉. 相山火山盆地穿地壳岩浆系统的三维精细结构及动力学背景[D]. 南昌: 东华理工大学, 2021.
[21] Yu H. Three-dimensional fine structure and geodynamics setting of transcrustal magmatic system beneath the Xiangshan volcanic basin[D]. Nanchang: East China University of Technology, 2021.
[22] 汪炳柱, 徐世浙, 刘保华, 等. 多次插值切割法分场的一个实例[J]. 石油地球物理勘探, 1997, 32(3):431-438,462.
[22] Wang B Z, Xu S Z, Liu B H, et al. An example of aeromagnetic anomaly separation using multi-interpolation division[J]. Oil Geophysical Prospecting, 1997, 32(3):431-438,462.
[23] Deng J Z, Yu H, Chen H, et al. Ore-controlling structures of the Xiangshan volcanic basin,SE China:Revealed from three-dimensional inversion of magnetotelluric data[J]. Ore Geology Reviews, 2020, 127(0):103807.
doi: 10.1016/j.oregeorev.2020.103807
[24] 郭一豪. 基于Gramian约束的大地电磁与重力正则化联合反演研究[D]. 南昌: 东华理工大学, 2020.
[24] Guo Y H. Study on regularized joint inversion of magnetotelluric and gravity based on Gramian constraints[D]. Nanchang: East China University of Technology, 2020.
[1] 张利振, 孙成禹, 王志农, 李世中, 焦峻峰, 颜廷容. 面波信息约束的初至波走时层析反演方法[J]. 物探与化探, 2023, 47(5): 1198-1205.
[2] 张金强. 基于正则化理论的时频分析方法及应用[J]. 物探与化探, 2023, 47(4): 965-974.
[3] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[4] 邢文军, 曹思远, 陈思远, 孙耀光. 基于谱反演方法的叠后纵波阻抗反演[J]. 物探与化探, 2023, 47(2): 429-437.
[5] 王智, 王程, 方思南. 基于非结构化有限元的三维井地电阻率法约束反演[J]. 物探与化探, 2022, 46(6): 1431-1443.
[6] 姚含, 徐海. 基于梯度投影法的全变差正则化全波形反演[J]. 物探与化探, 2022, 46(4): 977-981.
[7] 张莹莹. 带约束的多辐射场源半航空瞬变电磁一维自适应正则化反演方法[J]. 物探与化探, 2022, 46(2): 424-432.
[8] 何可, 郭明, 胡章荣, 易国财, 王仕兴. 半航空瞬变电磁L1范数自适应正则化反演[J]. 物探与化探, 2021, 45(5): 1338-1346.
[9] 艾正敏, 叶益信, 汤文武, 陈晓, 杜家明. 基于非结构三角网格的海洋CSEM和MT二维联合反演研究[J]. 物探与化探, 2021, 45(1): 149-158.
[10] 徐云霞, 文鹏飞, 张宝金, 刘斌. OBS在琼东南海域水合物矿体识别中的应用[J]. 物探与化探, 2020, 44(6): 1276-1282.
[11] 刘畅, 李振春, 曲英铭, 徐夷鹏, 赵伟洁. 地震层析成像方法综述[J]. 物探与化探, 2020, 44(2): 227-234.
[12] 郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2): 372-380.
[13] 宁媛丽, 周子阳, 孙栋华. 重磁资料在鄂尔多斯盆地西南缘基底研究中的应用[J]. 物探与化探, 2020, 44(1): 34-41.
[14] 梁生贤, 王桥, 焦彦杰, 廖国忠, 郭境. LSQR法在位场反演中的分析与评价[J]. 物探与化探, 2019, 43(2): 359-366.
[15] 何涛, 王万银, 黄金明, 张明华, 杨敏. 正则化方法在比值类位场边缘识别方法中的研究[J]. 物探与化探, 2019, 43(2): 308-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com