Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (4): 906-915    DOI: 10.11720/wtyht.2023.1398
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
铜绿山矿田成矿远景预测及三维地质模型
刘豹(), 杨宇山(), 刘天佑
中国地质大学(武汉) 地球物理与空间信息学院,湖北 武汉 430074
Metallogenic prospect prediction and 3D geological modeling for the Tonglyushan ore field
LIU Bao(), YANG Yu-Shan(), LIU Tian-You
School of Geophysics and Geomatics, China University of Geosciences (Wuhan), Wuhan 430074, China
全文: PDF(7791 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

铜绿山矿田是鄂东南矿集区最重要的矽卡岩型铜铁金多金属矿田,其成矿与铜绿山岩株体关系密切。因此,查明该岩体深部展布和形态及其与周缘灰岩大理岩的接触关系,对矿田深部找矿预测具有十分重要的意义。笔者在细致分析铜绿山岩体及岩株体、灰岩大理岩及捕虏体、矽卡岩矿体及矿化体等重磁异常组合特征的基础上,推测铜绿山岩体的边界,圈定铜绿山岩体内部灰岩大理岩捕虏体和矿化体,利用三维物性反演、2.5D重磁人机交互反演、3D重磁人机交互反演结果,结合钻孔、地质资料开展三维地质建模,获得了铜绿山矿田4 000 m以浅的岩体、矿化体的三维地质模型,为该区的靶区圈定及深部找矿预测提供依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘豹
杨宇山
刘天佑
关键词 铜绿山矿田三维地质建模人机交互反演捕虏体    
Abstract

The Tonglvshan ore field is the most important skarn copper-iron-gold polymetallic ore field in the southeastern Hubei ore concentration area. Since its mineralization is closely related to Tonglvshan stocks, ascertaining the deep distribution and morphologies of these stocks and their contact relationship with surrounding limestones and marbles holds great significance for deep prospecting prediction of the ore field. This study first conducted a detailed analysis of the gravity and magnetic anomaly combinations of the Tonglvshan pluton and stocks; limestones and marbles, as well as their xenoliths; and skarn ore bodies and mineralized bodies. Accordingly, this study inferred the boundary of the Tonglvshan pluton and delineated the xenoliths and mineralized bodies of limestones and marbles within the Tonglvshan pluton. Then, this study conducted the 3D geological modeling based on the results from the 3D physical property inversion and 2.5D and 3D gravity-magnetic human-computer interaction inversion, as well as the drilling and geological data. Finally, this study established a 3D geological model for the plutons and mineralized bodies at depths of 4000 m and below in the Tonglvshan ore field, providing a basis for target delineation and deep prospecting prediction.

Key wordsTonglvshan ore field    3D geological modeling    human-computer interaction inversion    xenolith
收稿日期: 2022-08-15      修回日期: 2023-02-06      出版日期: 2023-08-20
ZTFLH:  P631  
基金资助:国家自然科学基金面上项目“基于多点地质统计学的重磁三维随机反演方法研究”(41974152)
通讯作者: 杨宇山(1977-),男,副教授,主要从事重磁资料处理与解释方面的教学与科研工作。Email:samyys@126.com
作者简介: 刘豹(1996-),男,在读硕士,主要从事重磁资料的处理与解释及三维地质建模工作。Email:LiuB@cug.edu.cn
引用本文:   
刘豹, 杨宇山, 刘天佑. 铜绿山矿田成矿远景预测及三维地质模型[J]. 物探与化探, 2023, 47(4): 906-915.
LIU Bao, YANG Yu-Shan, LIU Tian-You. Metallogenic prospect prediction and 3D geological modeling for the Tonglyushan ore field. Geophysical and Geochemical Exploration, 2023, 47(4): 906-915.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1398      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I4/906
Fig.1  铜绿山矿田区域构造(a)及地质(b)
F1—鄂城-咸宁超壳断裂;F2—襄樊-广济超壳断裂;F3—姜桥-下陆断裂;F4—江南带断裂;F5—毛铺-两剑桥断裂;F6—山坡-枫林超壳断裂;X1—大冶湖向斜;Y1—鄂城岩体;Y2—铁山岩体;Y3—金山店岩体;Y4—灵乡岩体;Y5—殷祖岩体;Y6—阳新岩体;L01~L55—反演的55条剖面位置
Table 1  铜绿山矿田主要岩(矿)石物性(据湖北省第一地质大队,2014[17])
Fig.2  铜绿山矿田航磁化极异常(a)和布格重力异常(b)
Fig.3  铜绿山矿田布格重力异常小波变换2~4阶细节
a—布格重力异常小波变换2阶细节;b—布格重力异常小波变换3阶细节;c—布格重力异常小波变换4阶细节
Fig.4  铜绿山矿田化极磁异常小波变换2~4阶细节
a—化极磁异常小波变换2阶细节;b—化极磁异常小波变换3阶细节;c—化极磁异常小波变换4阶细节
Fig.5  12TL线综合解释剖面
Fig.6  铜绿山矿田捕虏体远景区预测
Fig.7  化极磁异常小波变换二阶细节解释
(绿色区域为布格重力异常小波变换1+2阶细节0 mGal以上重力高)
Fig.8  地球物理综合解释剖面
a—13线地球物理综合解释剖面;b—B15线地球物理综合解释剖面;c—C27线地球物理综合解释剖面
Fig.9  3D物性反演和2.5D/3D人机交互反演结果
a—磁化率3D反演结果;b—密度3D反演结果;c—2.5D/3D重磁人机交互反演结果
Fig.10  铜绿山矿田三维岩体模型
Fig.11  铜绿山主体岩体不同角度视
a—东南视角;b—西南视角
[1] 蔡恒安, 徐江嬿, 陈松林, 等. 鄂东南矿集区深部找矿进展及下步找矿思路[J]. 资源环境与工程, 2020, 34(4):501-505,511.
doi: 10.16536/j.cnki.issn.1671-1211.2020.04.003
[1] Cai H A, Xu J Y, Chen S L, et al. Deep prospecting and next prospecting thoughts of southeast Hubei Mining Area[J]. Resources Environment and Engineering, 2020, 34(4):501-505,511.
[2] 吴飞, 易露, 尚世超, 等. 鄂东南矿集区铜绿山矿田深部探测物探方法技术及找矿效果探究[J]. 资源环境与工程, 2021, 35(5):606-610,651.
doi: 10.16536/j.cnki.issn.1671-1211.2021.05.007
[2] Wu F, Yi L, Shang S C, et al. Deep exploration geophysical method technology and prospecting effect of Touglushan Orefield in Southeast Hubei Ore Concentration Area[J]. Resources Environment and Engineering, 2021, 35(5):606-610,651.
[3] 熊继传, 魏世昆. 关于鄂东南地区地质矿产勘查工作的思考[J]. 资源环境与工程, 2013, 27(S1):51-55.
[3] Xiong J C, Wei S K. Reflections on geological and mineral exploration in southeast Hubei Province[J]. Resources Environment and Engineering, 2013, 27(S1):51-55.
[4] 张世涛, 陈华勇, 韩金生, 等. 鄂东南铜绿山大型铜铁金矿床成矿岩体年代学、地球化学特征及成矿意义[J]. 地球化学, 2018, 47(3):240-256.
[4] Zhang S T, Chen H Y, Han J S, et al. Geochronology,geochemistry,and mineralization of quartz monzodiorite and quartz monzodiorite porphyry in Tonglüshan Cu-Fe-Au deposit,Edongnan ore district, China[J]. Geochimica, 2018, 47(3):240-256.
[5] 闫芳, 魏克涛, 王宇, 等. 湖北大冶铜绿山铜铁矿床找矿预测模型及找矿突破思路[J]. 资源环境与工程, 2020, 34(4):494-500.
doi: 10.16536/j.cnki.issn.1671-1211.2020.04.002
[5] Yan F, Wei K T, Wang Y, et al. Prediction model and breakthrough in Tonglvshan Cu-Fe deposit in Daye Cty,Hubei Province[J]. Resources Environment and Engineering, 2020, 34(4):494-500.
[6] 张宗保. 湖北铜绿山铜铁矿床成矿机制探讨[J]. 地学前缘, 2010, 17(5):296-305.
[6] Zhang Z B. A discussion on the genetic mechanism of Tonglyushan skarn Cu-Fe deposit,Hubei Province[J]. Eaeth Science Frontiers, 2010, 17(5):296-305.
[7] 柳炳利, 郭科, 陶中平, 等. 铜绿山铜铁矿地质体三维建模与原生晕深部盲矿预测[J]. 国土资源科技管理, 2012, 29(6):38-43.
[7] Liu B L, Guo K, Tao Z P, et al. Prediction of primary Halo Deep Blind Ore through three-dimensinal geolodical modeling of delafossite in Tonglu Moutain[J]. Scientific and Technological Management of Land and Resources. 2012, 29(6):38-43.
[8] 邵显, 王文俊, 曹丽霞. DIMINE数字软件在铜绿山矿矿山地质的应用[J]. 中国金属通报, 2015(S1):160-162.
[8] Shao X, Wang W J, Cao L X. Application of DIMINE digital software in Tonglvshan Mine Geology[J]. China Metal Bulletin, 2015(S1):160-162.
[9] 赵逸君, 毛晓梅, 王冕. 三维建模在铜绿山铜铁矿区的应用[J]. 资源环境与工程, 2015, 29(4):503-509.
doi: 10.16536/j.cnki.issn.1671-1211.201504028
[9] Zhao Y J, Mao X M, Wang M. Application of 3D modeling in Tonglvshan Copper-Iron Mining Area[J]. Resources Environment and Engineering, 2015, 29(4):503-509.
doi: 10.16536/j.cnki.issn.1671-1211.201504028
[10] 朱丹, 刘天佑, 杨宇山. 鄂东南地区岩体重磁异常场特征及找矿方向[J]. 物探与化探, 2017, 41(4):587-593.
[10] Zhu D, Liu T Y, Yang Y S. Gravity and magnetic anomalies characteristics of rock bodies and ore-prospecting orientation in the southeast of Hubei Province[J]. Geophysical and Geochemical Exploration, 2017, 41(4):587-593.
[11] 刘天佑, 刘大为, 詹应林, 等. 磁测资料处理新方法及在危机矿山挖潜中的应用[J]. 物探与化探, 2006, 30(5):377-381,396.
[11] Liu T Y, Liu D W, Zhan Y L, et al. The application new magnetic data processing methods to the potentiality exploration in crisis mines[J]. Geophysical and Geochemical Exploration, 2006, 30(5):377-381,396.
[12] 周月, 官大维, 延海涛, 等. 基于先验信息约束的重磁电联合三维交互反演技术实践——以彭山穹隆构造为例[J]. 物探与化探, 2021, 45(2):308-315.
[12] Zhou Y, Guan D W, Yan H T, et al. 3D gravith magnetic and electrical inversion modeling based on prior information:A case study of the dome structure in Pengshan area,Jiangxi Province[J]. Geophysical and Geochemical Exploration, 2021, 45(2):308-315.
[13] 徐荣华, 张国胜, 胡清乐, 等. 鄂东南铜绿山矿田构造特征及其控矿规律[J]. 资源环境与工程, 2012, 26(3):224-228.
[13] Xu R H, Zhang G S, Hu Q Y, et al. Structural characteristics and ore controlling law of Tonglushan Ore field in Southeastern Hubei[J]. Resources Environment and Engineering, 2012, 26(3):224-228.
[14] 李红利, 宋煜, 熊国雄. 铜绿山铜铁矿床地质特征及找矿方向[J]. 采矿技术, 2021, 21(5):57-60.
[14] Li H L, Song Y, Xiong G X. Geological characteristics and prospecting direction of Tonglyushan copper-iron deposit[J]. Mining Technology, 2021, 21(5):57-60.
[15] 邵显. 湖北大冶市铜绿山铜铁矿地质特征及矿床成因[J]. 云南地质, 2021, 40(2):163-169.
[15] Shao X. The geological feature and genesis of Tonglvshan Cu-Fe deposit in date,Hubei[J]. Yunnan Geology, 2021, 40(2):163-169.
[16] 马光. 鄂东南铜绿山铜铁金矿床地质特征、成因模式及找矿方向[D]. 长沙: 中南大学, 2005.
[16] Ma G. Geological features,mineralization model and prospecting areas of Tonglushan Cu-Fe-Au deposit,southeast Hubei[D]. Changsha: Central South University, 2005.
[17] 徐玮, 余兴江, 冯岩斌, 等. 阳新岩体西北段铜铁金多金属矿整装勘查[R]. 湖北省地质局第一地质大队, 2014.
[17] Xu W, Yu X J, Feng Y B, et al. Copper-iron-gold polymetallic ore assembly exploration in the northwest section of Yangxin rock mass[R]. First Geological Brigade of Hubei Geological Bureau, 2014.
[1] 汪文刚, 李凯. 基于GOCAD软件的多源地质勘探数据接口开发[J]. 物探与化探, 2022, 46(6): 1534-1539.
[2] 陈晓晶, 虎新军, 白亚东, 仵阳, 陈涛涛, 曹园园, 倪萍. 银川盆地南部灵武凹陷基底构造特征[J]. 物探与化探, 2022, 46(4): 862-867.
[3] 陈晓晶, 虎新军, 李宁生, 安百州, 白亚东. 银川平原基于地球物理资料三维建模的深部地质构造研究[J]. 物探与化探, 2020, 44(2): 245-253.
[4] 罗辉, 王驹, 蒋实, 赵宏刚, 金远新. 高放废物地质处置新场岩体三维地质模型构建与应用[J]. 物探与化探, 2019, 43(3): 568-575.
[5] 何育枫, 李晓娟, 佘继红, 陈晔, 徐礼鹏. 基于T-C-V架构的三维城市地质信息共享平台建设[J]. 物探与化探, 2018, 42(4): 804-810.
[6] 周子阳, 常树帅, 宁媛丽, 陈江源. 2.5D人机交互反演在航磁异常解释中的应用[J]. 物探与化探, 2016, 40(6): 1232-1236.
[7] 屈栓柱, 胡华伟, 潘德仁. 高精度磁测在尼勒克县穹库尔铁矿中的应用分析[J]. 物探与化探, 2016, 40(5): 910-915.
[8] 林玉祥, 马小伟, 朱传真, 宋喜林, 米晓利, 张岗. 地表化探异常立体解释模型的建立及其意义——以库车坳陷米斯布拉克地区为例[J]. 物探与化探, 2016, 40(4): 705-712.
[9] 张恒磊, 刘天佑, 朱朝吉, 周肇武. 区域地质调查与资源勘查高精度磁测找矿效果——以青海尕林格矿区为例[J]. 物探与化探, 2011, 35(1): 12-16.
[10] 冯杰, 刘天佑, 杨宇山. 基于可视化技术的3D井地磁测人机交互反演[J]. 物探与化探, 2010, 34(4): 541-545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com