Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (6): 1580-1587    DOI: 10.11720/wtyht.2023.0032
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于岩石物性引导的地球物理联合反演研究
连晟1,2(), 程正璞1,2, 罗旋1, 李敬杰1(), 田蒲源1,2
1.中国地质调查局 水文地质环境地质调查中心,河北 保定 071051
2.天津市地热资源勘查开发工程研究中心,天津 300300
Joint inversion of geophysical data under the guidance of petrophysical properties
LIAN Sheng1,2(), CHENG Zheng-Pu1,2, LUO Xuan1, LI Jing-Jie1(), TIAN Pu-Yuan1,2
1. Center for Hydrogeology and Environmental Geology Survey, China Geological Survey, Baoding 071051, China
2. Tianjin Engineering Center of Geothermal Resources Exploration and Development, Tianjin 300300, China
全文: PDF(4905 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

多元地球物理勘探资料的联合处理和综合解释是深部地热资源勘探评价工作必不可缺的环节,联合反演和后反演地质分异技术是目前深部资源勘探领域的2个研究热点。为融合多元地球物理场信息,降低单一地球物理场反演的多解性,本文利用岩石物性先验信息作为引导,以地震解释地层结构信息建立结构模型,采用高斯混合模型约束地层的地球物理参数,将重力、磁法、大地电磁进行正则化联合反演,实现了多物性结构的耦合,最终形成了重、磁、电、震联合反演软件,基于多物性联合反演的结果,利用Arrhenius定律,通过电阻率实现对典型干热岩场地温度场的预测。通过对直立六面体理论模型正演结果进行联合反演计算,联合反演结果相对于单独反演,对异常体的空间形态刻画以及物性数值恢复具有较好的效果,而且能够充分融合地质、岩石物性和地球物理等多元数据,更加符合实际规律。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
连晟
程正璞
罗旋
李敬杰
田蒲源
关键词 高斯混合模型重、磁、电联合反演岩石物性先验信息温度场预测    
Abstract

The joint processing and integrated interpretation of multi-source geophysical exploration data are indispensable to the exploration evaluation of deep geothermal resources. Joint inversion and post-inversion geological differentiation are two major hot research topics in deep resource exploration. To integrate the multi-source geophysical field information and reduce the inversion multiplicity of single geophysical fields, this study built a structural model using the stratigraphic structure information from seismic interpretation, with the prior information of petrophysical properties as a guide. This study constrained the stratigraphic geophysical parameters using the Gaussian mixture model and conducted regularized joint inversion of gravity, magnetic, and magnetotelluric data, thus achieving the coupling of multiple physical structures. Finally, this study developed the software for the joint inversion of gravity, magnetic, magnetotelluric, and seismic data. Based on the joint inversion results and electrical resistivity, this study predicted the temperature field at typical hot dry rock sites using the Arrhenius law. The forward modeling results of the theoretical model for cubic anomalies were used for the joint inversion. Compared with individual inversion, the joint inversion performs well in the spatial characterization of anomalies and the recovery of physical property values. Furthermore, the joint inversion can fully integrate multiple data on geology, petrophysical properties, and geophysics, thus well conforming to the actual conditions.

Key wordsGaussian mixture model    joint inversion of gravity-magnetic-magnetotelluric data    petrophysical properties    prior information    temperature field prediction
收稿日期: 2023-01-30      修回日期: 2023-04-07      出版日期: 2023-12-20
:  P631  
基金资助:地质调查项目“干热岩资源调查与勘查试采示范”(DD20230018);国家重点研发计划课题“干热断地热能资源评价方法与靶区优选”(2018YFB1501801)
通讯作者: 李敬杰(1985-),女,高级工程师,从事水文地质环境地质研究工作。Email:lijingjie@mail.cgs.gov.cn
作者简介: 连晟(1985-),男,高级工程师,从事水工环地球物理勘探技术方法应用与研究。Email:liansheng@mail.cgs.gov.cn
引用本文:   
连晟, 程正璞, 罗旋, 李敬杰, 田蒲源. 基于岩石物性引导的地球物理联合反演研究[J]. 物探与化探, 2023, 47(6): 1580-1587.
LIAN Sheng, CHENG Zheng-Pu, LUO Xuan, LI Jing-Jie, TIAN Pu-Yuan. Joint inversion of geophysical data under the guidance of petrophysical properties. Geophysical and Geochemical Exploration, 2023, 47(6): 1580-1587.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.0032      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I6/1580
岩石类型 E0/eV logσ0/(Ω-1cm-1)
花岗岩 0.9 -2.4
闪长岩 0.86 -1.0
安山岩 0.7 -2.2
安山玄武岩 0.6 -1.2
Table 1  岩浆岩的活化能E0值与常数系数logσ0试验室测量结果
Fig.1  正演模型参数
Fig.2  正演模型高斯混合模型密度、磁化率、电阻率分布
a—正演模型密度-磁化率概率分布密度;b—正演模型为密度-电阻率概率密度分布
Fig.3  长方体模型重力、磁法和大地电磁数据单独反演与联合反演结果对比
a—重力单独反演结果;b—长方体模型联合反演密度结果;c—磁法单独反演结果;d—长方体模型联合反演磁化率结果;e—大地电磁单独反演结果图;f—长方体模型联合反演电阻率结果
Fig.4  共和盆地典型地震勘查结果
Fig.5  研究区联合反演电阻率结果
Fig.6  研究区联合反演密度结果
Fig.7  密度和电阻率联合反演结果交会(a)及密度分布(b)
Fig.8  温度—深度剖面
[1] Gallardo L, Meju M. Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints[J]. Journal of Geophysical Research, 2004, 109:1093.
[2] Moorkamp M, Jones A G, Eaton D W. Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm:Are seismic velocities and electrical conductivities compatible?[J]. Geophysical Research Letters, 2007, 34(16):L16311.
[3] 李桐林, 张镕哲, 朴英哲, 等. 部分区域约束下的交叉梯度多重地球物理数据联合反演[J]. 地球物理学报, 2016, 59(8):2979-2988.
doi: 10.6038/cjg20160821
[3] Li T L, Zhang R Z, Pu Y Z, et al. Multiple joint inversion of geophysical data with sub-region crossgradient constraints[J]. Chinese Journal of Geophysics, 2016, 59(8):2979-2988.
[4] 张磊. 基于岩石物性约束的MT与重力二维正则化联合反演[D]. 南昌: 东华理工大学, 2016.
[4] Zhang L. Regularization joint inversion of two-dimensional magnetotelluric and gravity based on petrophysical constraints[D]. Nanchang: East China University of Technology, 2016.
[5] Sun J, Li Y. Joint inversion of multiple geophysical data using guided fuzzy c-means clustering[J]. Geophysics, 2016, 81(3):ID37-ID57.
[6] Li Y G, Melo A, Martinez C, et al. Geology differentiation:A new frontier in quantitative geophysical interpretation in mineral exploration[J]. The Leading Edge, 2019, 38(1):60-66.
doi: 10.1190/tle38010060.1
[7] 易柯, 张志勇, 李曼, 等. 基于FCM聚类算法的二维RMT电阻率与介电常数联合反演[J]. 地球物理学报, 2022, 65(6):2340-2350.
[7] Yi K, Zhang Z Y, Li M, et al. Joint inversion of resistivity and permittivity for two dimensional RMT data based on FCM clustering[J]. Chinese Journal of Geophysics, 2022, 65(6):2340-2350.
[8] 张镕哲. 多物性参数的联合反演研究及应用[D]. 长春: 吉林大学, 2020.
[8] Zhang R Z. Research and application on joint inversion based on multiple physical parameters[D]. Changchun: Jilin University, 2020.
[9] Astic T, Oldenburg D W. A framework for petrophysically and geologically guided geophysical inversion using a dynamic Gaussian mixture model prior[J]. Geophysical Journal International, 2019, 219(3):1989-2012.
doi: 10.1093/gji/ggz389
[10] Di-Giuseppe M G, Troiano A, Troise C, et al. k-Means clustering as tool for multivariate geophysical data analysis:An application to shallow fault zone imaging[J]. Journal of Applied Geophysics, 2014, 101:108-115.
doi: 10.1016/j.jappgeo.2013.12.004
[11] Di-Giuseppe M G, Troiano A, Patella D, et al. A geophysical k -means cluster analysis of the Solfatara-Pisciarelli volcano-geothermal system,Campi Flegrei (Naples,Italy)[J]. Journal of Applied Geophysics, 2018, 156:44-54.
doi: 10.1016/j.jappgeo.2017.06.001
[12] 曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005.
[12] Zheng H L. Gravity field and gravity exploration[M]. Beijing: Geological Press, 2005.
[13] 管志宁. 地磁场与磁法勘探[M]. 北京: 地质出版社, 2005.
[13] Guan Z N. Geomagnetic field and magnetic prospecting[M]. Beijing: Geology Press, 2005.
[14] Zhang J, Liu J, Feng B, et al. Three-dimensional magnetotelluric modeling using the finite element model reduction algorithm[J]. Computers & Geosciences, 2021, 151:104750.
doi: 10.1016/j.cageo.2021.104750
[15] Parker R L. Understanding inverse theory[J]. Annual Review of Earth and Planetary Sciences, 1977, 5(1):35-64.
doi: 10.1146/earth.1977.5.issue-1
[16] Tikhonov A, Arsenin V Y. Solutions of ill-posed problems[J]. American Mathematical Society, 1977, 32:1320-1322.
[17] Astic T, Heagy L J, Oldenburg D W. Petrophysically and geologically guided multi-physics inversion using a dynamic Gaussian mixture model[J]. Geophysical Journal International, 2020, 224(1):40-68.
doi: 10.1093/gji/ggaa378
[18] Menzinger M, Wolfgang R. The Meaning and use of the arrhenius activation energy[J]. Angewandte Chemie International Edition in English, 1969, 8(6):438-444.
doi: 10.1002/anie.v8:6
[19] Laštovičková M. A review of laboratory measurements of the electrical conductivity of rocks and minerals[J]. Physics of the Earth and Planetary Interiors, 1991, 66(1-2):1-11.
doi: 10.1016/0031-9201(91)90099-4
[20] 张森琦, 严维德, 黎敦朋, 等. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质, 2018, 45(6):1087-1102.
[20] Zhang S Q, Yan W D, Li D P, et al. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin,Qinghai Province[J]. Geology in China, 2018, 45(6):1087-1102.
[21] 张二勇. 干热岩资源调查与勘查试采示范工程简介[J]. 中国地质, 2022, 49(2):350.
[21] Zhang E Y. A brief introduction to the demonstration project of hot dry rock resources investigation and exploration[J]. China Geology, 2022, 49(2):350.
[22] 张森琦, 付雷, 张杨, 等. 基于高精度航磁数据的共和盆地干热岩勘查目标靶区圈定[J]. 天然气工业, 2020, 40(9):156-169.
[22] Zhang S Q, Fu L, Zhang Y, et al. Delineation of hot dry rock exploration target area in the Gonghe Basin based on high-precision aeromagnetic data[J]. Natrual Gas Industry, 2020, 40(9):156-169.
[1] 屈挺, 贺日政, 鱼鹏亮, 王素芬, 陈小龙, 刘建利. 西藏甲玛矿区岩石物性统计及应用[J]. 物探与化探, 2021, 45(3): 661-668.
[2] 袁永真, 张鹏辉, 张小博. 大兴安岭中南段上古生界烃源岩地层的岩石物性特征[J]. 物探与化探, 2019, 43(4): 778-782.
[3] 邵平安. 河南省区域岩石密度背景参考值统计特征[J]. 物探与化探, 2014, 38(1): 71-74,80.
[4] 刘建利, 李西周, 张泉. 重、磁、电联合反演在银额盆地定量解释中的应用[J]. 物探与化探, 2013, 37(5): 853-858.
[5] 李艳军, 杨辟元. 应用趋势分析方法对1:5万山东水道幅变质岩发育区岩石物性研究[J]. 物探与化探, 1995, 19(4): 280-285.
[6] 吕经建. 浅谈区域岩石物性调查的必要性和可行性[J]. 物探与化探, 1995, 19(3): 212-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com