Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (4): 1064-1070    DOI: 10.11720/wtyht.2023.1516
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
地表起伏对地下管线GPR探测的影响
曾波1(), 刘硕2, 杨军3, 冯德山2(), 袁忠明3, 柳杰3, 王珣2
1.广州市城市规划勘测设计研究院,广东 广州 510060
2.中南大学 地球科学与信息物理学院,湖南 长沙 410083
3.广州市市政工程设计研究总院有限公司,广东 广州 510060
Influence of surface undulations on GPR-based underground pipeline detection
ZENG Bo1(), LIU Shuo2, YANG Jun3, FENG De-Shan2(), YUAN Zhong-Ming3, LIU Jie3, WANG Xun2
1. Guangzhou Urban Planning and Design Survey Research Institute,Guangzhou 510060,China
2. School of Geosciences and Info-Physics,Central South University,Changsha 410083,China
3. Guangzhou Municipal Engineering Design & Research Institute Co. Ltd.,Guangzhou 510060,China
全文: PDF(3759 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地下管线是城市的重要设施,承担着能源输送、信息传递等功能,为城市生活提供了便利和保障。探地雷达(ground penetrating radar,GPR)作为一种高分辨率、高精度、非开挖、非破坏性的探测技术,在管线测量中具有巨大的优势。然而地表地形复杂,多有起伏,对于GPR探测地下管线有很大的影响。因此,本文采用有限单元法对地下管线探测进行了数值模拟,该方法可以与非结构网格结合,更好地拟合地表起伏地形;此外,介绍了如何进行高度校正,将所得剖面数据与地形相吻合,更容易分析异常体特征。最后开展了两个数值实验,分析了起伏地表对于不同埋深、不同间距、不同材质及不同填充物管线探测的影响,为GPR数据解释提供理论基础。实验结果表明,因地表起伏原因,波形和反射波能量将发生畸变,并不能作为判断管线信息的唯一依据。因此,需进行高度校正,利用双曲线的顶点来判断管线的埋深、材质等信息。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾波
刘硕
杨军
冯德山
袁忠明
柳杰
王珣
关键词 探地雷达管线探测地表起伏有限单元法高度校正    
Abstract

As important urban facilities,underground pipelines perform the functions of energy transfer and information transmission,providing convenience and guarantee for urban life.Ground-penetrating radar (GPR),as a high-resolution,high-precision,trenchless,and non-destructive detection technique,has great advantages in pipeline surveys.However,undulating surfaces with complex terrain greatly influence GPR-based detection of underground pipelines.Therefore,this study conducted numerical simulations of the underground pipeline detection using the finite element method,which can be combined with an unstructured grid to fit the undulating surfaces effectively.Furthermore,this study introduced the height correction method to match the obtained geologic sections with terrain,making it easier to analyze the anomaly characteristics.Finally,through numerical experiments,this study analyzed the influence of undulating surfaces on the detection of pipelines with different burial depths,spacings,materials,and fillers,providing a theoretical basis for GPR data interpretation.The experimental results show that waveforms and reflected wave energy,subjected to distortion due to surface undulations,cannot be used as the sloebasis for judging pipeline information.Therefore,height correction is required,and the vertexes of hyperbolas can be used to judge the burial depths and materials of pipelines.

Key wordsground penetrating radar    pipeline detection    surface undulating    finite element method    height correction
收稿日期: 2022-10-24      修回日期: 2023-06-09      出版日期: 2023-08-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(42074161);国家自然科学基金项目(42104143);湖南省自然科学基金项目(2021JJ30806);湖南省自然科学基金项目(2022JJ40584);湖南省研究生科研创新项目(CX20220188)
通讯作者: 冯德山(1978-),男,博士,教授,博导,从事地球物理正反演与数据处理研究工作。Email:fengdeshan@126.com
作者简介: 曾波(1977-),男,高级工程师,主要从事地下管线探测和地下空间测绘工作。Email:75813052@qq.com
引用本文:   
曾波, 刘硕, 杨军, 冯德山, 袁忠明, 柳杰, 王珣. 地表起伏对地下管线GPR探测的影响[J]. 物探与化探, 2023, 47(4): 1064-1070.
ZENG Bo, LIU Shuo, YANG Jun, FENG De-Shan, YUAN Zhong-Ming, LIU Jie, WANG Xun. Influence of surface undulations on GPR-based underground pipeline detection. Geophysical and Geochemical Exploration, 2023, 47(4): 1064-1070.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1516      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I4/1064
Fig.1  不同埋深、不同间距的模型网格示意
a—水平地表;b—起伏地表
Fig.2  正演剖面
a—水平地表;b—起伏地表
Fig.3  高度校正后的正演剖面
a—水平地表;b—起伏地表
Fig.4  不同材质、不同填充物的模型网格示意
a—水平地表;b—起伏地表
Fig.5  正演剖面
a—水平地表;b—起伏地表
Fig.6  高度校正后的正演剖面
a—水平地表;b—起伏地表
[1] 赵欣, 王希良, 刘珍岩, 等. 复杂条件下的地下管线探测模拟[J]. 物探与化探, 2014, 38(6):1307-1312.
[1] Zhao X, Wang X L, Liu Z Y, et al. Simulation of underground pipelines under complicated condition[J]. Geophysical and Geochemical Exploration, 2014, 38(6):1307-1312.
[2] Park B, Kim J, Lee J, et al. Underground object classification for urban roads using instantaneous phase analysis of Ground Penetrating Radar (GPR) data[J]. Remote Sensing, 2018, 10(9):1-24.
doi: 10.3390/rs10010001
[3] 姚显春, 闫茂, 吕高, 等. 地质雷达探测地下管线分类判别方法研究[J]. 地球物理学进展, 2018, 33(4):1740-1747.
[3] Yao X C, Yan M, Lyu G, et al. Research on underground pipeline classification and discrimination method based on geological radar detection[J]. Progress in Geophysics, 2018, 33(4):1740-1747.
[4] 韩佳明, 仲鑫, 景帅, 等. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6):1476-1481.
[4] Han J M, Zhong X, Jing S, et al. The application of geological radar to urban pipeline detection in the loess area[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1476-1481.
[5] 曾昭发, 刘四新, 冯晅, 等. 探地雷达原理与应用[M]. 北京: 电子工业出版社, 2005.
[5] Zeng Z F, Liu S X, Feng X, et al. Theory and application of ground penetrating radar[M]. Beijing: Electronics Industry Press, 2005.
[6] 肖敏, 陈昌彦, 贾辉, 等. 金属管线对探地雷达探测道路地下病害的干扰[J]. 物探与化探, 2016, 40(5):1046-1050.
[6] Xiao M, Chen C Y, Jia H, et al. The study of the interference region around metal pipeline in underground disease detection of urban road[J]. Geophysical and Geochemical Exploration, 2016, 40(5):1046-1050.
[7] 梁小强, 杨道学, 张可能, 等. FDTD数值模拟在GPR管线探测中的应用[J]. 地球物理学进展, 2017, 32(4):1803-1807.
[7] Liang X Q, Yang D X, Zhang K N, et al. Application of FDTD numerical simulation of Ground Penetrating Radar in pipeline detection[J]. Progress in Geophysics, 2017, 32(4):1803-1807.
[8] Yee K. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas & Propagation, 1966, 14(3):302-307.
[9] 葛德彪, 闫玉波. 电磁波时域有限差分法[M]. 西安: 西安电子科技大学出版社, 2005.
[9] Ge D B, Yan Y B. Finite-difference time-domain method for electromagnetic waves[M]. Xi'an: Xidian University Press, 2005.
[10] 王书, 闫天龙. 地下水污染调查中探地雷达有限差分数值模拟[J]. 物探与化探, 2016, 40(5):1051-1054.
[10] Wang S, Yan T L. The extraction of sounding curves from the data of high-density resistivity method for intepretation[J]. Geophysical and Geochemical Exploration, 2016, 40(5):1051-1054.
[11] Gao L, Song H, Liu H, et al. Model test study on oil leakage and underground pipelines using ground penetrating radar[J]. Russian Journal of Nondestructive Testing, 2020, 56(5):435-444.
doi: 10.1134/S1061830920050058
[12] 李静, 曾昭发, 吴丰收, 等. 探地雷达三维高阶时域有限差分法模拟研究[J]. 地球物理学报, 2010, 53(4):974-981.
[12] Li J, Zeng Z F, Wu F S, et al. Three dimensional high-order FDTD simulation for GPR[J]. Chinese Journal of Geophysics, 2010, 53(4):974-981.
[13] 李静, 刘津杰, 曾昭发, 等. 基于变换光学有限差分探地雷达数值模拟研究[J]. 地球物理学报, 2016, 59(6):2280-2289.
[13] Li J, Liu J J, Zeng Z F, et al. Study of GPR simulation based on the transformation optics FDTD[J]. Chinese Journal of Geophysics, 2016, 59(6):2280-2289.
[14] 雷建伟, 方宏远, 李银萍, 等. 基于共形辛Euler算法的非金属地下管道精细化高效探地雷达正演模型[J]. 地球物理学报, 2020, 63(8):3192-3204.
[14] Lei J W, Fang H Y, Li Y P, et al. GPR forward model of underground non-metallic pipeline based on parallel conformal symplectic Euler algorithm[J]. Chinese Journal of Geophysics, 2020, 63(8):3192-3204.
[15] 徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994.
[15] Xu S Z. The finite element method in geophysics[M]. Beijing: Science Press, 1994.
[16] Jin J M. The finite element method in electromagnetics[M]. John Wiley & Sons, 2014.
[17] 冯德山, 王珣. 基于卷积完全匹配层的非规则网格时域有限元探地雷达数值模拟[J]. 地球物理学报, 2017, 60(1):413-423.
[17] Feng D S, Wang X. Convolution perfectly matched layer for the finte-element time-domain method modeling of Ground Penetrating Radar[J]. Chinese Journal of Geophysics, 2017, 60(1):413-423.
[18] Zhang Z, Wang H H, Wang M L, et al. Non-Split PML boundary condition for finite element time-domain modeling of ground penetrating radar[J]. Journal of Applied Mathematics and Physics, 2019, 7(5):1077-1096.
doi: 10.4236/jamp.2019.75073
[19] 王洪华, 王敏玲, 张智, 等. 基于Pade逼近的Cole-Cole频散介质GPR有限元正演[J]. 地球物理学报, 2018, 61(10):4136-4147.
[19] Wang H H, Wang M L, Zhang Z, et al. Simulation of GPR in Cole-Cole dispersive media by finite element method based on Pade approximation[J]. Chinese Journal of Geophysics, 2018, 61(10):4136-4147.
[20] 王洪华, 吕玉增, 王敏玲, 等. 基于PML边界条件的二阶电磁波动方程GPR时域有限元模拟[J]. 地球物理学报, 2019, 62(5):1929-1941.
[20] Wang H H, Lyu Y Z, Wang M L, et al. A perfectly matched layer for second order electromagnetic wave simulation of GPR by finite element time domain method[J]. Chinese Journal of Geophysics, 2019, 62(5):1929-1941.
[21] 侯爵, 刘有山, 兰海强, 等. 基于起伏地形平化策略的弹性波逆时偏移成像方法[J]. 地球物理学报, 2018, 61(4):1434-1446.
[21] Hou J, Liu Y S, Lan H Q, et al. Elastic reverse time migration using a topograpghy flattening scheme[J]. Chinese Journal of Geophysics, 2018, 61(4):1434-1446.
[22] 刘四新, 冯彦谦, 傅磊, 等. 机载探地雷达的进展以及数值模拟[J]. 地球物理学进展, 2012, 27(2):727-735.
[22] Liu S X, Feng Y Q, Fu L, et al. Advances and numerical simulation of airborne ground penetrating radar[J]. Progress in Geophysics, 2012, 27(2):727-735.
[23] Taflove A, Brodwin M E. Numerical solution of steady-state electromagnetic scattering problems using the time-dependent maxwell's equations[J]. IEEE Transactions on Microwave Theory and Techniques, 1975, 23(8):623-630.
doi: 10.1109/TMTT.1975.1128640
[1] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[2] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[3] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[4] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[5] 徐立, 冯温雅, 姜彦南, 王娇, 朱四新, 覃紫馨, 李沁璘, 张世田. 基于行列方差方法的探地雷达道路数据感兴趣区域自动提取技术[J]. 物探与化探, 2023, 47(3): 804-809.
[6] 冯温雅, 程丹丹, 王成浩, 程星. 基于探地雷达等效采样的时变零偏实时校正方法[J]. 物探与化探, 2023, 47(2): 372-376.
[7] 周东, 刘毛毛, 刘宗辉, 刘保东. 基于瞬时相位余弦的探地雷达多层路面自动检测[J]. 物探与化探, 2022, 46(4): 961-967.
[8] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[9] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[10] 蔡连初, 缪念有. 探地雷达宽角反射图形拟合方法[J]. 物探与化探, 2021, 45(1): 239-244.
[11] 韩佳明, 仲鑫, 景帅, 刘平. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6): 1476-1481.
[12] 李靖翔, 赵明, 赖皓, 熊双成, 唐阳. 地下电缆的探地雷达图像特征与识别技术[J]. 物探与化探, 2020, 44(6): 1482-1489.
[13] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
[14] 高阳, 彭明涛, 杨培胜, 王恒, 王平, 李海. 三峡库区巫峡段高陡峡谷区危岩裂隙带探地雷达探测[J]. 物探与化探, 2020, 44(2): 441-448.
[15] 王飞详, 梁风, 左双英. 基于探地雷达岩体浅部节理面识别的模型实验[J]. 物探与化探, 2020, 44(1): 185-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com