Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (6): 1482-1489    DOI: 10.11720/wtyht.2020.1339
  工程勘查 本期目录 | 过刊浏览 | 高级检索 |
地下电缆的探地雷达图像特征与识别技术
李靖翔1(), 赵明1, 赖皓1, 熊双成1, 唐阳2
1.中国南方电网超高压公司 广州局,广东 广州 510000
2.三峡大学 电气与新能源学院,湖北 宜昌 443002
Imaging detection and recognition technology of underground cable based on ground penetrating radar
LI Jing-Xiang1(), ZHAO Ming1, LAI Hao1, XIONG Shuang-Cheng1, TANG Yang2
1. GZ Bureau, EHV Power Transmission Company of China Southern Power Gird, Guangzhou 510000, China
2. College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China
全文: PDF(3521 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为实现对地下电力电缆的快速探测与识别,提出了基于探地雷达对地下电缆成像的探测与识别方法。首先通过正演实测实验分析了地下带电电缆与非带电介质的探地雷达探测图像波形特征,突出了带电电缆反射波形的特殊性;然后建立了基于磁场叠加原理的常见布线方式下的电缆磁场辐射计算模型,从电缆结构与磁场分布角度解释了电缆探测波形的形成原因及特殊性,进一步突出了电缆与其他非带电地层介质的区别,提出了基于探地雷达对地下电缆成像的探测与识别方法;最后通过反演实验对所提方法进行了验证,实验结果表明所提方法在电缆的探测与识别上具有良好的应用效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李靖翔
赵明
赖皓
熊双成
唐阳
关键词 探地雷达地下电缆正演实验快速探测    
Abstract

In order to realize the rapid detection and identification of underground power cables, this paper proposed a method based on ground penetrating radar for imaging and identification of underground cables. Firstly, the characteristics of the detection waveforms of the underground charging cable and the non-charged medium under the action of ground penetrating radar were analyzed by forward modeling experiments, which highlighted the particularity of the reflected waveform of the charged cable, and then the magnetic field radiation of the cable under the common wiring mode was established based on the principle of magnetic field superposition. The calculation model explained the cause and particularity of cable detection waveform from the perspective of cable structure and magnetic field distribution, and further highlighted the difference between the cable and other non-charged formation media. A method for detecting and identifying underground cable based on ground penetrating radar was proposed. Finally, the proposed method was verified by inversion experiments. The experimental results show that the proposed method has a good application effect in cable detection and identification.

Key wordsground penetrating radar    underground cable    forward modeling    rapid detection
收稿日期: 2019-06-28      出版日期: 2020-12-29
:  TM757.1  
  P631.1  
基金资助:湖北省科技计划项目技术创新专项重大项目(2016AAA040)
作者简介: 李靖翔(1985-),男,湖北襄阳人,高级工程师,研究方向为特高压运行维护管理。Email:274159613@qq.com
引用本文:   
李靖翔, 赵明, 赖皓, 熊双成, 唐阳. 地下电缆的探地雷达图像特征与识别技术[J]. 物探与化探, 2020, 44(6): 1482-1489.
LI Jing-Xiang, ZHAO Ming, LAI Hao, XIONG Shuang-Cheng, TANG Yang. Imaging detection and recognition technology of underground cable based on ground penetrating radar. Geophysical and Geochemical Exploration, 2020, 44(6): 1482-1489.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1339      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I6/1482
典型介质 典型介质探测图像 雷达图像特征描述 典型介质 典型介质探测图像 雷达图像特征描述
金属水管 图像波长较短,波形呈尖锐状,反射波幅值较大,无多次反射与振荡现象 地层空洞 反射波明显,图像局部有较强反射波且波形较长
花岗岩 图像波长较短,波形尖锐但不明显,反射波幅值小 电缆 图像上方密集三角反射波形为钢筋网反射波,下方回波呈明显叠加与振荡状
排水通道 图像上方为钢筋网路面,图像下方局部有较强回波 公路 波形近似水平分布,波形连续且相似,为路面分层界面
Table 1  不同介质雷达探测图像
Fig.1  电缆结构示意
Fig.2  电缆磁场辐射示意
Fig.3  电缆磁场强度分布规律
Fig.4  探地雷达电磁波辐射电缆示意
Fig.5  典型介质的探测单道波形示意
Fig.6  小区现场探测图
Fig.7  区域一的带电电缆探测波形
Fig.8  区域一现场开挖验证
Fig.9  区域二非带电介质探测波形
[1] 李振兴, 孟晓星, 李振华, 等. 应用等效网络原理的新型配电网故障定位技术[J]. 电力系统及其自动化学报, 2019,31(1):31-39.
[1] Li Z X, Meng X X, Li Z H, et al. Novel fault location technology for distribution network based on equivalent network principle[J]. Proceedings of the CSU-EPSA, 2019,31(1):31-39.
[2] 姜运, 彭红海, 曾祥君, 等. 配电网故障行波定位动模实验平台[J]. 电力科学与技术学报, 2017,32(3):81-85.
[2] Jiang Y, Peng H H, Zeng X J, et al. Dynamic simulation experimental platform for traveling-wave-based fault location in distribution network[J]. Journal of Electric Power Science and Technology, 2017,32(3):81-85.
[3] 李鸿, 韩聪, 张雷. 一种地下电力电缆路径检测系统的研究[J]. 电测与仪表, 2015,52(16):73-77.
[3] Li H, Han C, Zhang L. Research on an underground electricity cable path detection system[J]. Electrical Measurement & Instrumentation, 2015,52(16):73-77.
[4] 王广柱, 贾春娟, 张立斌. 一种带钢铠的低压电力电缆故障精确定位新方法[J]. 电力系统自动化, 2014,38(3):161-165.
doi: 10.7500/AEPS201211026
[4] Wang G Z, Jia C J, Zhang L B. A novel method of fault accurate location for low voltage power cables with steel armor[J]. Automation of Electric Power Systems, 2014,38(3):161-165.
[5] Roqueta G, Jofre L, Feng M Q. Analysis of the electromagnetic signature of reinforced concrete structures for nondestructive evaluation of corrosion damage[J]. IEEE Transaction on Instrumentation and Measurement, 2012,61:1090-1098.
[6] 刘生荣, 张瑾爱, 唐小平. 探地雷达在探测基岩顶深度中的应用[J]. 物探与化探, 2018,42(2):325-330.
[6] Liu S R, Zhang J A, Tang X P. The application of GPR in detecting the depth of bedrock[J]. Geophysical and Geochemical Exploration, 2018,42(2):325-330.
[7] 陈文涛, 周利兵, 李山, 等. 基于探地雷达对变电站接地网的成像检测技术[J]. 电瓷避雷器, 2018,31(3):54-59.
[7] Chen W T, Zhou L B, Li S, et al. Imaging detection technology of substation grounding network based on ground penetrating radar[J]. Insulators and Surge Arresters, 2018 , 31(3):54-59.
[8] 梁皓澜, 周力行, 朱凌峰, 等. 基于探地雷达的电磁散射成像技术对杆塔接地体的腐蚀检测[J]. 电瓷避雷器, 2016(6):183-186.
[8] Liang H L, Zhou L X, Zhu L F, et al. Detection of the tower electromagnetic grounding scattering corrosion based on gpr imaging technology[J]. Insulators and Surge Arresters, 2016(6):183-186.
[9] 廖旭涛, 洪天求, 刘东甲, 等. 非金属管道的电磁波反射频率特性研究[J]. 合肥工业大学学报:自然科学版, 2018,41(4):490-496,526.
[9] Liao X T, Hong T Q, Liu D J, et al. Frequency properties of electromagnetic wave reflection of nonmetallic pipeline[J]. Journal of Hefei University of Technology:Natural Science, 2018,41(4):490-496,526.
[10] 张军伟, 刘秉峰, 李雪, 等. 基于GPRMax2D的地下管线精细化探测方法[J]. 物探与化探, 2019,43(2):435-440.
[10] Zhang J W, Liu B F, Li X, et al. Refined detection method of underground pipeline based on GPRMax2D[J]. Geophysical and Geochemical Exploration, 2019,43(2):435-440.
[11] 张鹏, 董韬, 马彬, 等. 基于探地雷达的地下管线管径探测与判识方法[J]. 地下空间与工程学报, 2015,11(4):1023-1032.
[11] Zhang P, Dong W, Ma B, et al. Research on interpreting the information of underground pipeline’s diameter detected by GPR[J]. Chinese Journal of Underground Space and Engineering, 2015,11(4):1023-1032.
[12] 吴春喜, 卢恩贵. 电力电缆的快速识别方法初探[J]. 河北能源职业技术学院学报, 2016,16(2):54-56.
[12] Wu C X, Lu E G. Preliminary exploration to rapid identification method of the power cables[J]. Journal of Hebei Energy Vocational and Technical College, 2016,16(2):54-56.
[13] Di Q Y, Zhang M G, Wang M Y. Time-domain inversion of GPR data containing attenuation resulting from conductive losses[J]. Geophysics, 2006,71(5):103-109.
[14] Jiang Z M, Zeng Z F, Li J, et al. Simulation and analysis of GPR signal based on stochastic media model with an ellipsoidal autocorrelation function[J]. Journal of Applied Geophysics, 2013,99:91-97.
[15] 李艳, 孟毓. 500 kV电缆隧道的电磁场研究[J]. 中国科技论文, 2016,11(11):1315-1320.
[15] Li Y, Meng Y. Study of electromagnetic field of 500 kV cables in tunnel[J]. China Sciencepaper, 2016,11(11):1315-1320.
[16] 万保权, 干喆渊, 何旺龄, 等. 电力电缆线路的电磁环境影响因子分析[J]. 电网技术, 2013,37(6):1536-1541.
[16] Wan B Q, Gan Z Y, He W L, et al. Analysis on influence factors of electromagnetic environmental for underground power cable[J]. Power System Technology, 2013,37(6):1536-1541.
[17] 张向明, 腾腾, 黄垂兵, 等. 供电电缆磁场辐射的预测模型及优化设计[J]. 海军工程大学学报, 2015,27(2):10-15.
[17] Zhang X M, Teng T, Huang C B, et al. Prediction model and its field radiation of optimal design for magnetic power supply cable[J]. Journal of Naval University of Engineering, 2015,27(2):10-15.
[18] 周星, 王川川, 朱长青, 等. 外场辐照下埋地电缆瞬态响应规律研究[J]. 高压电器, 2013,49(12):7-12.
[18] Zhou X, Wang C C, Zhu C Q, et al. Transient induction response law of buried cableexcited by external electromagnetic field[J]. High Voltage Apparatus, 2013,49(12):7-12.
[19] 刘青, 谢彦召. 高空电磁脉冲作用下埋地电缆的瞬态响应规律[J]. 高电压技术, 2017,43(9):3014-3020.
[19] Liu Q, Xie Y Z. Transient response law of buried cable to high-altitude electromagnetic pulse[J]. High Voltage Engineering, 2017,43(9):3014-3020.
[1] 杨丹, 李伟, 魏永梁, 宋斌. 双树复小波变换在川藏铁路拉林段某隧道超前地质预报中的应用[J]. 物探与化探, 2021, 45(6): 1504-1511.
[2] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[3] 蔡连初, 缪念有. 探地雷达宽角反射图形拟合方法[J]. 物探与化探, 2021, 45(1): 239-244.
[4] 刘杰, 段炜, 王俊, 刘成, 戴国强. 等值反磁通瞬变电磁法在公路隧道塌陷区的探测应用[J]. 物探与化探, 2020, 44(6): 1470-1475.
[5] 韩佳明, 仲鑫, 景帅, 刘平. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6): 1476-1481.
[6] 高阳, 彭明涛, 杨培胜, 王恒, 王平, 李海. 三峡库区巫峡段高陡峡谷区危岩裂隙带探地雷达探测[J]. 物探与化探, 2020, 44(2): 441-448.
[7] 王飞详, 梁风, 左双英. 基于探地雷达岩体浅部节理面识别的模型实验[J]. 物探与化探, 2020, 44(1): 185-190.
[8] 许泽善, 周江涛, 刘四新, 曾贤德. 三维步进频率探地雷达在沥青层厚度检测中的应用[J]. 物探与化探, 2019, 43(5): 1145-1150.
[9] 龚俊波, 王洪华, 王敏玲, 罗泽明. 逆时偏移在探地雷达数据处理中的应用[J]. 物探与化探, 2019, 43(4): 835-842.
[10] 王成浩, 程丹丹. 基于马氏距离模板特征的地雷目标识别研究[J]. 物探与化探, 2019, 43(4): 899-903.
[11] 李俊杰, 徐庆强, 李剑强, 何建设, 郭佳豪. 千岛湖配水工程隧洞超前预报中的综合物探技术[J]. 物探与化探, 2019, 43(2): 428-434.
[12] 张军伟, 刘秉峰, 李雪, 祝全兵, 任跃勤. 基于GPRMax2D的地下管线精细化探测方法[J]. 物探与化探, 2019, 43(2): 435-440.
[13] 戴前伟, 陈威, 张彬. 改进型粒子群算法及其在GPR全波形反演中的应用[J]. 物探与化探, 2019, 43(1): 90-99.
[14] 石春娟. 重庆大足千手观音造像的电磁勘探和水文地质勘探[J]. 物探与化探, 2018, 42(6): 1306-1310.
[15] 宋二乔, 刘四新, 何荣钦, 蔡佳琪, 罗坤. 探地雷达探测季节性冻土的正演模拟[J]. 物探与化探, 2018, 42(5): 962-969.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com