Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (4): 1056-1063    DOI: 10.11720/wtyht.2023.1276
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
番禺A地区时深转换速度精细研究及应用
刘汉卿(), 罗明, 何叶, 陈维涛
中海石油(中国)有限公司 深圳分公司,广东 深圳 518000
Fine-scale study and application of velocity-based time-to-depth conversion of the A area, Panyu District
LIU Han-Qing(), LUO Ming, HE Ye, CHEN Wei-Tao
Shenzhen Branch of China National Offshore Oil Corporation,Shenzhen 518000, China
全文: PDF(7911 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

番禺A构造评价井在钻探后发现圈闭形态与钻前认识存在较大的差异,分析认为主要原因是受中浅层速度异常影响。为此,打破传统的速度建模和校正方法,提出了一种适合于本目标区的速度校正和变速成图方法。该方法从井资料出发分析速度异常产生的原因,进而将速度异常与地震数据振幅属性巧妙结合,获得带有地质意义的速度异常校正趋势面和校正后的层速度。所得深度构造图误差在5 m以内,有效落实了圈闭形态,为后续有同样地质背景的构造落实提供了一定的借鉴意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘汉卿
罗明
何叶
陈维涛
关键词 时深转换速度校正变速成图构造落实    
Abstract

As shown by appraisal wells in structure A in Panyu District, the actual trap geometry differs significantly from its pre-drilling understanding. The analysis shows that the difference is mainly caused by the velocity anomalies in the middle-shallow layers. Breaking through the conventional methods for velocity modeling and correction, this study proposed a new method for velocity correction and variable velocity mapping suitable for the target area. In this method, the causes of velocity anomalies were analyzed based on well data, and then the velocity anomalies were ingeniously combined with seismic amplitude. Accordingly, the trend surface with geological significance for velocity anomaly correction and corrected interval velocities were obtained. The resulting depth-structure map with errors of less than 5 m effectively presented the trap geometry. This study provides a certain reference for the subsequent ascertainment of structures in the same geological setting.

Key wordstime depth conversion    velocity correction    varying velocity mapping    structural implementation
收稿日期: 2022-06-14      修回日期: 2023-03-21      出版日期: 2023-08-20
ZTFLH:  P631  
基金资助:中海石油(中国)有限公司科技项目“南海东部油田上产2000万吨关键技术研究”(CNOOC-KJ 135 ZDXM 37 SZ);中海石油(中国)有限公司深圳分公司生产性科研项目“惠州地区珠江组改造型岩性圈闭储层条件研究及有利目标优选
作者简介: 刘汉卿(1988-),女,硕士,工程师,2015年毕业于中国石油大学(华东),主要从事石油地球物理解释及勘探研究工作。Email:liuhq32@cnooc.com.cn
引用本文:   
刘汉卿, 罗明, 何叶, 陈维涛. 番禺A地区时深转换速度精细研究及应用[J]. 物探与化探, 2023, 47(4): 1056-1063.
LIU Han-Qing, LUO Ming, HE Ye, CHEN Wei-Tao. Fine-scale study and application of velocity-based time-to-depth conversion of the A area, Panyu District. Geophysical and Geochemical Exploration, 2023, 47(4): 1056-1063.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1276      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I4/1056
Fig.1  西江凹陷古近系地层厚度及番禺A构造位置
Fig.2  A3井3种数据时深关系对比
Fig.3  番禺A地区3口井时间—深度对应关系
井名 预测深度/m 实钻深度/m 误差/m
A1 2 619 2 608 -11
A2 2 584 2 594 10
A3 2 577 2 586 9
Table 1  番禺A地区多井拟合时深预测深度误差
Fig.4  韩江组、珠江组DT速度与井校前后PSDM速度对比
Fig.5  ZH110层在PSDM-T和PSDM两套资料上的分层位置
Fig.6  过番禺A地区3口已钻井PSDM速度与DT速度对比
井名 含砂率/% 钙质含量(灰质、
粉砂质地层)/%
速度
/(m·s-1)
A1 66 4 3 708
A2 60 11 3 717
A3 54 13 3 830
Table 2  番禺A地区3口井含砂率统计
Fig.7  番禺A地区珠江组下段振幅异常反射特征
Fig.8  番禺A地区珠江组下段振幅属性与速度剩余校正量关系
Fig.9  番禺A地区珠江组下段剩余速度校正量等值线平面
Fig.10  番禺A地区目的层深度构造图
Fig.11  番禺A地区构造落实流程
[1] 李振春, 郭朝斌, 张凯, 等. 论碳酸盐岩探区时间域速度分析[J]. 地球物理学进展, 2011, 26(2):549-556.
[1] Li Z C, Guo C B, Zhang K, et al. To obtain accurate seismic velocity field in karst exploration area[J]. Progress in Geophysics, 2011, 26(2):549-556.
[2] 陆基孟. 地震勘探原理[M]. 北京: 中国石油大学出版社, 2006.
[2] Lu J M. Principles of Seismic Exploration[M]. Beijing: China University of Petroleum Press, 2006.
[3] 夏红敏, 郑小文, 黄捍东. 基于去低频化的低幅度构造识别方法研究及应用[J]. 物探与化探, 2021, 45(4):998-1003.
[3] Xia H M, Zheng X W, Huang H D. The application of low-amplitude structure based on low-frequency reduction[J]. Geophysical and Geochemical Exploration, 2021, 45(4):998-1003.
[4] 焦存礼, 周杰, 尚雅珍. 变速成图系统技术关键及其在塔中西部的应用[J]. 物探与化探, 2003, 27(3):189-193.
[4] Jiao C L, Zhou J, Shang Y Z. The varying velocity mapping technique: its key problems and its application to western Tazhong area[J]. Geophysical and Geochemical Exploration, 2003, 27(3):189-193.
[5] 王兴军, 满益志, 刘昌国, 等. 低幅度构造变速成图技术[J]. 石油地球物理勘探, 2008, 43(S1),69-72.
[5] Wang X J, Man Y Z, Liu C G, et al. Velocity-varying mapping technique for low-amplitude structure. OGP, 2008, 43(S1):69-72.
[6] 张珺. 加蓬盐下复杂构造区井控高精度变速成图的方法研究[J]. 物探与化探, 2017, 41(3):535-541.
[6] Zhang J. A study of the method of well controlled high precision variable velocity mapping in the subsalt complex structure area of Gabon[J]. Geophysical and Geochemical Exploration, 2017, 41(3):535-541.
[7] 张永华, 杨晟, 任军战, 等. 微幅度构造解释及变速成图方法-以泌阳凹陷梨树凹地区为例[J]. 石油物探, 2010, 49(2):176-182.
[7] Zhang Y H, Yang S, Ren J Z, et al. Micro-relief structures interpretation and variable-velocity mapping method:case study on Lishuao area of Biyang Depression[J]. Geophysical Prospecting for Petroleum, 2010, 49(2):176-182.
[8] 何际平, 鲁烈琴, 王红旗, 等. 复杂地区速度场建立于变速构造成图方法研究[J]. 地球物理学进展, 2003, 21(1):167-172
[8] He J P, Lu L Q, Wang H Q, et al. Methodology of establising velocity field and velocity variant depth mapping[J]. Progress in Geophysics, 2003, 21(1):167-172.
[9] 陈林, 邓勇, 盖永浩, 等. 复杂断块构造时深转换方法探讨:以涠西南凹陷为例[J]. 地球物理学进展, 2014, 29(3):1121-1127.
[9] Chen L, Deng Y, Gai Y H, et al. Exploration of time-depth conversion method in complicated fault block-take Weixinan sag for example[J]. Progress in Geophysics, 2014, 29(3):1121-1127.
[10] 蔡刚, 屈志毅. 构造复杂地区地震资料速度和成图方法研究与应用[J]. 天然气地球科学, 2005, 16(2):246-249.
[10] Cai G, Qu Z Y. Study of seismic data velocity and mapping method in complicated structure area and it’s application[J]. Natural Gas Geoscience 2005, 16(2):246-249.
[11] 陈华清, 张鹏志, 任百聪, 等. 渤海Q油田开发中后期高精度变速成图方法研究[J]. 物探化探计算技术, 2019, 41(1):27-33.
[11] Chen H Q, Zhang P Z, Ren B C, et al. Study on high precision variable-velocity mapping method in the middle-later developed period of fluvial oilfield development: a case study from Q oilfield,Bohai Bay[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(1):27-33.
[12] 徐立恒, 鲜波, 薛玉英, 等. 高精度地震时深转换方法研究及应用[J]. 吉林大学学报:地球科学版, 2014, 44(5):1712-1719
[12] Xu L H, Xian B, Xue Y Y, et al. Study and application on seismic time-depth conversion with high-precision[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(5):1712-1719
[13] 秦宁, 李振春, 杨晓东, 等. 具共散射点道集与角道集串级优化叠前偏移速度分析[J]. 吉林大学学报:地球科学版, 2013, 43(2):623-630.
[13] Qin N, Li Z C, Yang X D, et al. Pre-stack migration velocity analysis based on sequent optimization of common scattering point gathers and angle domain common imaging gathers[J]. Journal of Jilin University: Earth Science Edition, 2013, 43(2):623-630.
[14] 彭海龙, 赫建伟, 任婷, 等. 基于地质构造约束的3D 速度建模方法在琼东南盆地深水复杂断块区域成像中的应用[J]. 物探与化探, 2018, 42(3):537-544.
[14] Peng H L, He J W, Ren T, et al. The application of 3D velocity modeling based on geological constraint in Qiongdongnan basin deep water complex fault block area[J]. Geophysical and Geochemical Exploration, 2018, 42(3):537-544.
[15] 薛花, 杜民, 文鹏飞, 等. 网格层析速度反演方法在准三维西沙水合物中的应用[J]. 物探与化探, 2017, 41(5): 846-851.
[15] Xue H, Du M, Wen P F, et al. The application of grid tomography method to quasi three-dimensional of Xisha hydrate[J]. Geophysical and Geochemical Exploration, 2017, 41(5):846-851.
[1] 汪俊, 徐子英, 任卫波. 复杂沉积区地震剖面时深转换的多公式拟合方案及应用[J]. 物探与化探, 2020, 44(1): 149-155.
[2] 秦童, 蔡纪琰, 王改卫, 薛明星. 石臼坨凸起陡坡带高速异常区时深转换研究[J]. 物探与化探, 2018, 42(3): 589-593.
[3] 张珺. 加蓬盐下复杂构造区井控高精度变速成图的方法研究[J]. 物探与化探, 2017, 41(3): 535-541.
[4] 范芬, 刘爱群, 任科英, 吴云鹏. 乐东-陵水坡折带速度分析及时深转换方法[J]. 物探与化探, 2016, 40(6): 1185-1191.
[5] 李培培, 刘志国, 杨松岭, 闫青华, 李春鹏. 虚拟井技术在无井或少井条件下时深转换中的应用[J]. 物探与化探, 2015, 39(5): 994-1000.
[6] 李杏莉, 王彦春. 不同基准面上的速度场及时深转换[J]. 物探与化探, 2009, 33(1): 49-53.
[7] 焦存礼, 周杰, 尚雅珍. 变速成图系统技术关键及其在塔中西部的应用[J]. 物探与化探, 2003, 27(3): 189-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com