Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (6): 1431-1443    DOI: 10.11720/wtyht.2022.0181
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于非结构化有限元的三维井地电阻率法约束反演
王智1(), 王程2, 方思南3
1.长江大学 电子信息学院,湖北 荆州 434023
2.中煤科工集团 西安研究院有限公司,陕西 西安 710077
3.长江大学 地球物理与石油资源学院,湖北 武汉 430100
Constraint inversion of three-dimensional borehole-to-surface resistivity based on unstructured finite element
WANG Zhi1(), WANG Cheng2, FANG Si-Nan3
1. Electronics and Information School, Yangtze University, Jingzhou 434023,China
2. Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an 710077, China
3. College of Geophysics and Petroleum Resources,Yangtze University,Wuhan 430100,China
全文: PDF(5887 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

电磁探测反演是典型的不适定问题,易造成反演结果的多解性,不适定性是反演自身固有的特征,没有求解的附加信息这一本质困难是很难克服的,解决该问题的有效方法是研究约束反演。本文采用目前较为主流的高斯牛顿—共轭梯度法(GN-CG),在反演目标函数中直接施加约束条件,将介质电阻率的取值范围作为先验信息和约束条件以外点罚函数法的方式引入到反演目标函数中,与常规三维电阻率反演目标函数相比,增加了不等式约束项的目标函数,理论上可以压制反演的多解性。通过多种理论模型的测试结果表明,本文基于不等式约束的三维井地电阻率反演算法有效地改善了反演结果的精度,以惩罚函数法施加不等式约束条件的方式是现实可行及有效的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王智
王程
方思南
关键词 井地电阻率法反演高斯牛顿—共轭梯度法不等式约束惩罚函数法    
Abstract

The inversion of electromagnetic detection data is a typical ill-posed problem and is prone to cause a multiplicity of solutions of the inversion results. The ill-posedness is an inherent characteristic of inversion and is difficult to overcome without additional information. An effective way to solve this problem is constrained inversion. In this study, the Gauss-Newton - conjugate gradient (GN-CG) method was used to directly impose constraints on the inversion objective function. Specifically, the dielectric resistivity range was introduced into the inversion objective function as the prior information and constraints using the exterior penalty function method. Compared with the conventional three-dimensional resistivity inversion objective function, the objective function with inequality constraints can suppress the multiplicity of solutions in theory. As revealed by the testing results of various theoretical models, the three-dimensional borehole-to-surface resistivity inversion algorithm based on inequality constraints effectively improves the precision of inversion results, and the way of imposing inequality constraints using the penalty function method is feasible and effective.

Key wordsborehole-to-surface resistivity method    inversion    GN-CG    inequality constraint    penalty function method
收稿日期: 2022-04-13      修回日期: 2022-07-09      出版日期: 2022-12-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目“起伏地形下的井中激电井—地方式并行反演研究”(41604093);天地科技股份有限公司科技创新创业资金专项(2020-TD-QN11);中国博士后科学基金(2017M622382)
作者简介: 王智(1985-),男,湖北省武汉市人,博士,副教授,主要研究方向为电磁法数值模拟。Email:1324385898@qq.com
引用本文:   
王智, 王程, 方思南. 基于非结构化有限元的三维井地电阻率法约束反演[J]. 物探与化探, 2022, 46(6): 1431-1443.
WANG Zhi, WANG Cheng, FANG Si-Nan. Constraint inversion of three-dimensional borehole-to-surface resistivity based on unstructured finite element. Geophysical and Geochemical Exploration, 2022, 46(6): 1431-1443.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.0181      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I6/1431
Fig.1  球体模型结构及网格剖分示意
a—球体模型示意;b—球体模型网格剖分放大效果;c—点与测点网格加密效果;d—网格剖分示意
Fig.2  地下球体的解析解与数值解对比
Fig.3  解析解与数值解的相对误差
Fig.4  平坦地形下长方体模型
a—xoy水平截面; b—xoz垂直断面;c—三维异常体模型;d—测点加密示意;e—正演网格;f——反演网格
Fig.5  迭代次数与RMS的关系
Fig.6  三维反演结果
a—传统电阻率反演结果z=-7 m处xoy切片;b—传统电阻率反演结果y=25 m处xoz切片;c—施加不等式约束的反演结果z=-7 m处xoy切片;d—施加不等式约束的反演结果y=25 m处xoz切片;e—传统电阻率反演结果的三维剖面(电阻率小于50 Ω · m);f—施加不等式约束反演结果的三维剖面(电阻率小于50 Ω · m)
长方体编号 电阻率/ ( Ω · m ) 尺寸/(m×m×m)
S1 200 100 × 100 × 40
S2 100 100 × 100 × 40
S3 2000 350 × 50 × 40
B1 2000 350 × 100 × 200
B2 100 100 × 150 × 180
Table 1  长方体参数
Fig.7  异常体模型位置与网格剖分
a—三维异常体模型位置; b—地表数据观测系统;c—垂直剖面yoz; d—非结构化网格加密示意
Fig.8  井—地二极装置传统正则化反演与约束反演结果
a—传统正则化反演x=400 m处yoz剖面; b—传统正则化反演x=600 m处yoz剖面;c—约束反演x=400 m处yoz剖面; d—约束反演x=600 m处yoz剖面
[1] 柳建新, 赵然, 郭振威. 电磁法在金属矿勘查中的研究进展[J]. 地球物理学进展, 2019, 34(1):151-160.
[1] Liu J X, Zhao R, Guo Z W. Research progress of electromagnetic methods in the exploration of metal deposits[J]. Progress in Geophysics, 2019, 34(1):151-160.
[2] 吕庆田, 张晓培, 汤井田, 等. 金属矿地球物理勘探技术与设备:回顾与进展[J]. 地球物理学报, 2019, 62(10):3629-3664.
[2] Lyu Q T, Zhang X P, Tang J T, et al. Review on advancement in technology and equipment of geophysical exploration for metallic deposits in China[J]. Chinese Journal of Geophysics, 2019, 62(10):3629-3664.
[3] 吴小平, 刘洋, 王威. 基于非结构网格的电阻率三维带地形反演[J]. 地球物理学报, 2015, 58(8):2706-2717.
[3] Wu X P, Liu Y, Wang W. 3D resistivity inversion incorporating topography based on unstructured meshes[J]. Chinese Journal of Geophysics, 2015, 58(8):2706-2717.
[4] 王智, 吴爱平, 李刚. 起伏地表条件下的井中激电井地观测正演模拟研究[J]. 石油物探, 2018, 57(6):927-935, 951.
[4] Wang Z, Wu A P, Li G. Forward modeling of borehole-ground induced polarization method under undulating topography[J]. Geophyscial Prospecting for Petroleum, 2018, 57(6):927-935,951.
[5] 潘和平. 井中激发极化法在矿产资源勘探中的作用[J]. 物探与化探, 2013, 37(4):620-626.
[5] Pan H P. The Role of Borehole induced polarization/resistivity method in the exploration of mineral resoueces[J]. Geophysics and Geochemical Exploration, 2013, 37(4):620-626.
[6] 汤井田, 张继锋, 冯兵, 等. 井地电阻率法歧离率确定高阻油气藏边界[J]. 地球物理学报, 2007, 50(3):926-931.
[6] Tang J T, Zhang J F, Feng B, et al. Detemination of borders for resistive oil and gas reservoirs by deviation rate using the hole-to-surface resistivity method[J]. Chinese Journal of Geophysics, 2007, 50(3):926-931.
[7] 黄俊革, 王家林, 阮百尧. 三维高密度电阻率E-SCAN法有限元模拟异常特征研究[J]. 地球物理学报, 2006, 49(4):1206-1214.
[7] Huang J G, Wang J L, Ruan B Y. A study on FEM modeling of anomalies of 3-D high-density E-SCAN resistivity survey[J]. Chinese Journal of Geophysics, 2006, 49(4):1206-1214.
[8] Li Y, Spitzer K. Finite element resistivity modelling for three-dimensional structures with arbitrary anisotropy[J]. Physics of the Earth & Planetary Interiors, 2005, 150(1-3):15-27.
[9] Wu X. A 3-D finite-element algorithm for DC resistivity modelling using the shifted incomplete Cholesky conjugate gradient method[J]. Geophysical Journal International, 2003, 154(3):947-956.
[10] 吴小平, 汪彤彤. 利用共轭梯度算法的电阻率三维有限元正演[J]. 地球物理学报, 2003, 46(3):428-432.
[10] Wu X P, Wang T T. A 3-D finite-element resistivity forward modeling using conjugate gradient algorithm[J]. Chinese Journal of Geophysics, 2003, 46(3):428-432.
[11] Li Y, Klaus S. Three-dimensional DC resistivity forward modelling using finite elements in comparison with finite-difference solutions[J]. Geophysical Journal International, 2002, 51(3):924-934.
[12] 黄俊革, 阮百尧, 鲍光淑. 齐次边界条件下三维地电断面电阻率有限元数值模拟法[J]. 桂林工学院学报, 2002, 22(1):11-14.
[12] Huang J G, Ruan B Y, Bao G S. Fem under quantic-boundary condition for modeling resistivity on 3-D geoelectric section[J]. Journal of Guilin Institute of Technology, 2002, 22(1):11-14.
[13] Ren Z, Qiu L, Tang J, et al. 3-D direct current resistivity anisotropic modelling by goal-oriented adaptive finite element methods[J]. Geophysical Journal International, 2018, 212(1):76-87.
[14] Ren Z, Tang J. A goal-oriented adaptive finite-element approach for multi-electrode resistivity system[J]. Geophysical Journal International, 2014, 199(1):136-145.
[15] Wei W, Xiaoping W, Spitzer K. Three-dimensional DC anisotropic resistivity modelling using finite elements on unstructured grids[J]. Geophysical Journal International, 2013, 193(2):734-746.
[16] Ren Z, Jingtian T. 3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method[J]. Geophysics, 2010, 75(1):H7-H17.
[17] Blome M, Maurer H R, Schmidt K. Advances in three-dimensional geoelectric forward solver techniques[J]. Geophysical Journal International, 2009, 176(3):740-752.
[18] Rücker C, Günther T, Spitzer K. Three-dimensional modelling and inversion of dc resistivity data incorporating topography-I. Modelling[J]. Geophysical Journal International, 2006, 166(2):495-505.
[19] Günther T, Rücker C, Spitzer K. Three-dimensional modelling and inversion of DC resistivity data incorporating topography-II. Inversion[J]. Geophysical Journal of the Royal Astronomical Society, 2006, 166(2):506-517.
[20] Zhou B, Greenhalgh S A. Finite element three-dimensional direct current resistivity modelling; accuracy and efficiency considerations[J]. Geophysical Journal International, 2001, 145(3):679-688.
[21] Sasaki Y. 3-D resistivity inversion using finite-element method[J]. Geophysics, 1994, 59(12):1839.
[22] Wu X, Xiao Y, Qi C, et al. Computations of secondary potential for 3-D DC resistivity modelling using an incomplete Choleski conjugate-gradient method[J]. Geophysical Prospecting, 2003, 51(6):567-577.
[23] 吴小平, 徐果明. 利用ICCG迭代技术加快电阻率三维正演计算[J]. 煤田地质与勘探, 1999, 27(3):63-67.
[23] Wu X P, Xu G M. 3-D resistivity forward calculation accelerated by ICCG iteration technique[J]. Coal Geology and Exploration, 1999, 27(3):63-67.
[24] 吴小平, 徐果明, 李时灿. 利用不完全Cholesky共轭梯度法求解点源三维地电场[J]. 地球物理学报, 1998, 41(6):848-855.
[24] Wu X P, Xu G M, Li S C. The calculation of three-dimensional geoelectric field of point source by incomplete cholesky conjugate gradient method[J]. Chinese Journal of Geophysics, 1998, 41(6):848-855.
[25] Zhao S, Yedlin M J. Some refinements on the finite-difference method for 3-D dc resistivity modeling[J]. Geophysics, 1996, 61(5):1301-1307.
[26] Zhang J, Mackie R L, Madden T R. 3-D resistivity forward modeling and inversion using conjugate gradients[J]. Geophysics, 1995, 60(5):1313-1325.
[27] Spitzer K. A 3-D finite-difference algorithm for DC resistivity modelling using conjugate gradient methods[J]. Geophysical Journal International, 1995, 123(3):903-914.
[28] 汤井田, 王飞燕, 任政勇. 基于非结构化网格的2.5-D直流电阻率自适应有限元数值模拟[J]. 地球物理学报, 2010, 53(3):708-716.
[28] Tang J T, Wang F Y, Ren Z Y. 2.5-D DC resistivity modeling by adaptive finite-element method with unstructured triangulation[J]. Chinese Journal of Geophysics, 2010, 53(3):708-716.
[29] 任政勇, 汤井田. 基于局部加密非结构化网格的三维电阻率法有限元数值模拟[J]. 地球物理学报, 2009, 52(10):2627-2634.
[29] Ren Z Y, Tang J T. Finite element modeling of 3-D DC resistivity using locally refined unstructured meshes[J]. Chinese Journal of Geophysics, 2009, 52(10):2627-2634.
[30] 彭荣华, 胡祥云, 李建慧, 等. 频率域海洋可控源电磁垂直各向异性三维反演[J]. 地球物理学报, 2019, 62(6):2165-2175.
[30] Peng R H, Hu X Y, Li J H, et al. 3D inversion of frequency-domain marine CSEM data in VTI media[J]. Chinese Journal of Geophysics, 2019, 62(6):2165-2175.
[31] Gundogdu N Y, Candansayar M E. Three-dimensional regularized inversion of DC resistivity data with different stabilizing functionals[J]. Geophysics, 2018, 83(6):E399-E407.
[32] 郭来功, 戴广龙, 杨本才, 等. 多先验信息约束的三维电阻率反演方法[J]. 石油地球物理勘探, 2018, 53(6):1333-1340.
[32] Guo L G, Dai G L, Yang B C. et al. 3D resistivity inversion with multiple priori-information constraint[J]. Oil Geophysical Prospecting, 2018, 53(6):1333-1340.
[33] 彭荣华, 胡祥云, 韩波. 基于高斯牛顿法的频率域可控源电磁三维反演研究[J]. 地球物理学报, 2016, 59(9):3470-3481.
[33] Peng R H, Hu X Y, Han B. 3D inversion of frequency-domain CSEM data based on Gauss-Newton optimization[J]. Chinese Journal of Geophysics, 2016, 59(9):3470-3481.
[34] Oldenburg D W, Haber E, Shekhtman R. Three dimensional inversion of multisource time domain electromagnetic data[J]. Geophysics, 2013, 78(1):E47-E57.
[35] Pidlisecky A, Haber E, Knight R J. RESINVM3D: A 3D resistivity inversion package[J]. Geophysics, 2007, 72(2):H1-H10.
[36] 吴小平, 徐果明. 利用共轭梯度法的电阻率三维反演研究[J]. 地球物理学报, 2000, 43(3):420-427.
[36] Wu X P, Xu G M. Study on 3-D resistivity inversion using conjugate gradient method[J]. Chinese Journal of Geophysics, 2000, 43(3):420-427.
[37] 徐凯军, 李桐林, 张辉, 等. 基于共轭梯度法的垂直有限线源三维电阻率反演[J]. 煤田地质与勘探, 2006, 34(3):68-71.
[37] Xu K J, Li T L, Zhang H, et al. 3D resistivity inversion of vertical finite line source using conjugate gradients[J]. Coal Geology and Exploration, 2006, 34(3):68-71.
[38] Cao X Y, Huang X, Yin C C, et al. 3D MT anisotropic inversion based on unstructured finite-element method[J]. Journal of Environmental & Engineering Geophysics, 2021, 26(1):49-60.
[39] 惠哲剑, 殷长春, 刘云鹤, 等. 基于非结构有限元的时间域海洋电磁三维反演[J]. 地球物理学报, 2020, 63(8):3167-3179.
[39] Hui Z J, Yin C C, Liu Y H, et al. 3D inversion of time-domain marine EM data based on unstructured finite-element method[J]. Chinese Journal of Geophysics, 2020, 63(8):3167-3179.
[40] 余辉, 邓居智, 陈辉, 等. 起伏地形下大地电磁L-BFGS三维反演方法[J]. 地球物理学报, 2019, 62(8):3175-3188.
[40] Yu H, Deng J Z, Chen H, et al. Three-dimensional magnetotelluric inversion under topographic relief based on the limited-memory quasi-Newton algorithm(L_BFGS)[J]. Chinese Journal of Geophysics, 2019, 62(8):3175-3188.
[41] 邓琰, 汤吉, 阮帅. 三维大地电磁自适应正则化有限内存拟牛顿反演[J]. 地球物理学报, 2019, 62(9):3601-3614.
[41] Deng Y, Tang J, Ruan S. Adaptive regularized three-dimensional magnetotelluric inversion based on the LBFGS quasi-Newton method[J]. Chinese Journal of Geophysics, 2019, 62(9):3601-3614.
[42] 殷长春, 朱姣, 邱长凯, 等. 航空电磁拟三维模型空间约束反演[J]. 地球物理学报, 2018, 61(6):2537-2547.
[42] Yin C C, Zhu J, Qiu C K, et al. Spatially constrained inversion for airborne EM data using quasi-3D models[J]. Chinese Journal of Geophysics, 2018, 61(6):2537-2547.
[43] 秦策, 王绪本, 赵宁. 基于二次场方法的并行三维大地电磁正反演研究[J]. 地球物理学报, 2017, 60(6):2456-2468.
[43] Qin C, Wang X B, Zhao N. Parallel three-dimensional forward modeling and inversion of magnetotelluric based on a secondary field approach[J]. Chinese Journal of Geophysics, 2017, 60(6):2456-2468.
[44] 赵宁, 王绪本, 秦策, 等. 三维频率域可控源电磁反演研究[J]. 地球物理学报, 2016, 59(1):330-341.
[44] Zhao N, Wang X B, Qin C, et al. 3D frequency-domain CSEM inversion[J]. Chinese Journal of Geophysics, 2016, 59(1):330-341.
[45] 刘云鹤, 殷长春. 三维频率域航空电磁反演研究[J]. 地球物理学报, 2013, 56(12):4278-4287.
[45] Liu Y H, Yin C C. 3D inversion for frequency-domain HEM data[J]. Chinese Journal of Geophysics, 2013, 56(12):4278-4287.
[46] Avdeev D, Avdeeva A. 3D Magnetotelluric inversion using a limited-memory quasi-Newton optimization[J]. Geophysics, 2009, 74(3):F45.
[47] Xiao Y, Wei Z, Wang Z. A limited memory BFGS-type method for large-scale unconstrained optimization[J]. Computers & Mathematics with Applications, 2008, 56(4):1001-1009.
[48] Eldad, Haber, Douglas, et al. Inversion of time domain three-dimensional electromagnetic data[J]. Geophysical Journal International, 2007, 171(2):B23-B34.
[49] Avdeeva A, Avdeev D B. A limited memory quasi-Newton inversion for 1D magnetotellurics[J]. Geophysics, 2006, 71(5):G191-G196.
[50] Haber E. Quasi-Newton methods for large-scale electromagnetic inverse problems[J]. Inverse Problems, 2005, 21(1):305-323.
[51] Newman G A, Boggs P T. Solution accelerators for large-scale 3D electromagnetic inverse problems[J]. Inverse Problems, 2004, 20(6):S151-S170.
[52] Nash S G, Nocedal J. A numerical study of the limited memory BFGS method and the truncated-Newton method for large scale optimization[J]. SIAM Journal on Optimization, 1991, 1(3):358-372.
[53] Nocedal J. Updating quasi-Newton matrices with limited storage[J]. Mathematics of Computation, 1980, 35(151):773-782.
[54] 唐传章, 程见中, 严良俊, 等. 基于边界约束有限内存的拟牛顿CSAMT一维反演及应用[J]. 煤田地质与勘探, 2019, 47(5):193-200.
[54] Tang C Z, Cheng J Z, Yan L J, et al. LBFGS CSAMT 1D inversion of limited memory based on boundary constraint and its application[J]. Coal Geology and Exploration, 2019, 47(5):193-200.
[55] 马欢, 郭越, 吴萍萍, 等. 基于MPI并行算法的电阻率法多种装置数据的三维联合反演[J]. 地球物理学报, 2018, 61(12):5052-5065.
[55] Ma H, Guo Y, Wu P P, et al. 3-D joint inversion of multi-array data set in the resistivity method based on MPI parallel algorithm[J]. Chinese Journal of Geophysics, 2018, 61(12):5052-5065.
[56] 董浩, 魏文博, 叶高峰, 等. 基于有限差分正演的带地形三维大地电磁反演方法[J]. 地球物理学报, 2014, 57(3):939-952.
[56] Dong H, Wei W B, Ye G F, et al. Study of Three-dimensional magnetotelluric inversion including surface topography based on Finite-difference method[J]. Chinese Journal of Geophysics, 2014, 57(3):939-952.
[57] 张昆, 董浩, 严加永, 等. 一种并行的大地电磁场非线性共轭梯度三维反演方法[J]. 地球物理学报, 2013, 56(11):3922-3931.
[57] Zhang K, Dong H, Yan J Y, et al. A NLCG inversion method of magnetotellurics with parallel structure[J]. Chinese Journal of Geophysics, 2013, 56(11):3922-3931.
[58] 林昌洪, 谭捍东, 舒晴, 等. 可控源音频大地电磁三维共轭梯度反演研究[J]. 地球物理学报, 2012, 55(11):3829-3838.
[58] Lin C H, Tan H D, Shu Q, et al. Three-dimensional conjugate gradient inversion of CSAMT data[J]. Chinese Journal of Geophysics, 2012, 55(11):3829-3838.
[59] 胡祖志, 胡祥云, 何展翔. 大地电磁非线性共轭梯度拟三维反演[J]. 地球物理学报, 2006, 49(4):1226-1234.
[59] Hu Z Z, Hu X Y, He Z X. Pseudo-three-dimensional magnetotelluric using nonlinear conjugate gradients[J]. Chinese Journal of Geophysics, 2006, 49(4):1226-1234.
[60] Rodi W L, Mackie R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics, 2001, 66(1):174-187.
[61] Newman G A, Alumbaugh D L. Three-dimensional magnetotelluric inversion using non-linear conjugate gradients[J]. Geophysical Journal International, 2000, 140(2):410-424.
[62] 王智, 潘和平, 骆玉虎, 等. 基于不等式约束的井地电阻率法三维非线性共轭梯度反演研究[J]. 地球物理学进展, 2016, 31(1):360-370.
[62] Wang Z, Pan H P, Luo Y H, et al. 3-D hole-to-surface resistivity inversion with nonlinear conjugate gradients method under the constraint of inequality[J]. Progress in Geophysics, 2016, 31(1):360-370.
[63] 王智, 潘和平, 吴爱平, 等. 基于不等式约束的井中激电三维反演研究[J]. 石油物探, 2016, 55(3):455-466.
[63] Wang Z, Pan H P, Wu A P, et al. 3D inversion of borehole induced polarization under the inequality constraint[J]. Geophysical Prospecting for Petroleum, 2016, 55(3):455-466.
[64] Kim H J, Song Y, Lee K H. Inequality constraint in least-squares inversion of geophysical data[J]. Earth, Planets and Space, 1999, 51(4):255-259.
[65] Li Y, Oldenburg D W. 3-D Inversion of induced polarization data[J]. Geophysics, 2000, 65(6):1931-1945.
[66] 黄俊革, 阮百尧, 鲍光淑. 基于有限单元法的三维地电断面电阻率反演[J]. 中南大学学报:自然科学版, 2004, 35(2):295-299.
[66] Huang J G, Ruan B Y, Bao G S. Resistivity inversion on 3-D section based on FEM[J]. Journal of Central South University:Science and Technology, 2004, 35(2):295-299.
[67] 宛新林, 席道瑛, 高尔根, 等. 用改进的光滑约束最小二乘正交分解法实现电阻率三维反演[J]. 地球物理学报, 2005, 48(2):439-444.
[67] Wan X L, Xi D Y, Gao E G, et al. 3-D resistivity inversion by the least-squares QR factorization method under improved smoothness constraint condition[J]. Chinese Journal of Geophysics, 2005, 48(2):439-444.
[68] 刘斌, 李术才, 聂利超, 等. 基于自适应加权光滑约束与PCG算法的三维电阻率探测反演成像[J]. 岩土工程学报, 2012, 34(9):1646-1653.
[68] Liu B, Li S C, Nie L C, et al. Inversion imaging of 3D resistivity detection using adaptive-weighted smooth constraint and PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9):1646-1653.
[69] 刘斌, 李术才, 李树忱, 等. 基于不等式约束的最小二乘法三维电阻率反演及其算法优化[J]. 地球物理学报, 2012, 55(1):260-268.
[69] Liu B, Li S C, Li S C, et al. 3D electrical resistivity inversion with least-squares method based on inequality constraint and its computation effciency optimization[J]. Chinese Journal of Geophysics, 2012, 55(1):260-268.
[70] 刘斌, 聂利超, 李术才, 等. 三维电阻率空间结构约束反演成像方法[J]. 岩石力学与工程学报, 2012, 31(11):2258-2268.
[70] Liu B, Nie L C, Li S C, et al. 3D electrical resistivity inversion tomography with spatial structural constraint[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11):2258-2268.
[71] 底青云, 薛国强, 殷长春, 等. 中国人工源电磁探测新方法[J]. 中国科学:地球科学, 2020, 50(9):1219-1227.
[71] Di Q Y, Xue G Q, Yin C C, et al. New methods of controlled-source electromagnetic detection in China[J]. Science China Earth Sciences, 2020, 50(9):1219-1227.
[72] 殷长春, 刘云鹤, 熊彬. 地球物理三维电磁反演方法研究动态[J]. 中国科学:地球科学, 2020, 50(3):432-435.
[72] Yin C C, Liu Y H, Xiong B. Status and prospect of 3D inversions in EM geophysic[J]. Science China Earth Sciences, 2020, 50(3):432-435.
[73] Nocedal J, Wright S J, Mikosch T V, et al. Numerical Optimization[M]. Berlin:Springer, 1999.
[74] 徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994.
[74] Xu S Z. FEM in geophysics[M]. Beijing: Science Press, 1994.
[75] 韩波, 胡祥云, 何展翔, 等. 大地电磁反演方法的数学分类[J]. 石油地球物理勘探, 2012, 47(1):177-188.
[75] Han B, Hu X Y, He Z X, et al. Mathematical classification of magnetotelluric inversion methods[J]. Oil Geophysical Prospecting, 2012, 47(1):177-188.
[76] Siripunvaraporn W. Three-dimensional magnetotelluric inversion: An introductory guide for developers and users[J]. Surveys in Geophysics, 2012, 33(1):5-27.
[77] Geuzaine C, Remacle J F. Gmsh: A three-dimensional finite element mesh generator with built-in pre-and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79(1):1309-1331.
[78] Ahrens J, Geveci B, Law C. ParaView: An end-user tool for large data visualization[M]. New York: Academic Press, 2005.
[79] Ellis R G, Oldenburg D W. The pole-pole 3-D Dc-resistivity inverse problem:A conjugategradient approach[J]. Geophysical Journal of the Royal Astronomical Society, 1994, 119(1):187-194.
[80] Li Y, Oldenburg D W. Inversion of 3-D DC resisitivity data using an approximate inverse mapping[J]. Geophysical Journal International, 1994, 116(4):527-537.
[1] 丁志军, 罗维斌, 连伟章, 张星, 何海颦. 基于两步变异差分进化算法的激电测深一维反演[J]. 物探与化探, 2023, 47(4): 1033-1039.
[2] 刘豹, 杨宇山, 刘天佑. 铜绿山矿田成矿远景预测及三维地质模型[J]. 物探与化探, 2023, 47(4): 906-915.
[3] 张阳阳, 杜威, 王芝水, 缪旭煌, 张翔. 基于Lévay飞行的粒子群算法在大地电磁反演中的应用[J]. 物探与化探, 2023, 47(4): 986-993.
[4] 许第桥, 李茂. 二连盆地宽频大地电磁法数据精细反演处理研究——以满都拉图地区的数据为例[J]. 物探与化探, 2023, 47(4): 994-1001.
[5] 陈晓, 曾志文, 邓居智, 张志勇, 陈辉, 余辉, 王彦国. 基于不等式和Gramian约束的MT和重力正则化联合反演[J]. 物探与化探, 2023, 47(3): 575-583.
[6] 张瑾爱, 杨渊, 张林. 基于重力异常的镇安西部隐伏岩体空间分布规律研究[J]. 物探与化探, 2023, 47(3): 618-627.
[7] 陈子龙, 王海燕, 郭华, 王光文, 赵玉莲. 地震全波形反演研究进展与应用现状综述[J]. 物探与化探, 2023, 47(3): 628-637.
[8] 王莉利, 杜功鑫, 高新成, 王宁, 王维红. 基于U-Net网络的FWI地震低频恢复方法[J]. 物探与化探, 2023, 47(2): 391-400.
[9] 王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
[10] 任宪军, 李钟, 马应龙, 董萍, 田行达. 地震分频迭代反演在薄层河道砂体预测中的应用[J]. 物探与化探, 2023, 47(2): 420-428.
[11] 邢文军, 曹思远, 陈思远, 孙耀光. 基于谱反演方法的叠后纵波阻抗反演[J]. 物探与化探, 2023, 47(2): 429-437.
[12] 张明, 李相文, 金梦, 郑伟, 张磊, 马文高. 超深断控缝洞型储层迭代反演方法——以富满油田为例[J]. 物探与化探, 2023, 47(1): 22-30.
[13] 程正璞, 郭淑君, 魏强, 周乐, 雷鸣, 李戍. AMT地形影响与带地形反演研究[J]. 物探与化探, 2023, 47(1): 146-155.
[14] 朱剑兵, 高照奇, 田亚军, 梁兴城. 带有横向约束的全局优化波阻抗反演方法及应用[J]. 物探与化探, 2022, 46(6): 1477-1484.
[15] 张文波, 张莹, 李建慧. 地面回线源瞬变电磁法一维反演系统及其应用[J]. 物探与化探, 2022, 46(5): 1258-1266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com