Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (1): 22-30    DOI: 10.11720/wtyht.2023.1049
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
超深断控缝洞型储层迭代反演方法——以富满油田为例
张明(), 李相文(), 金梦, 郑伟, 张磊, 马文高
中国石油集团东方地球物理勘探有限责任公司研究院 库尔勒分院,新疆 库尔勒 841000
Iterative inversion method for ultradeep fault-controlled fracture-vug reservoirs:A case study of the Fuman oilfield,Tarim Basin
ZHANG Ming(), LI Xiang-Wen(), JIN Meng, ZHENG Wei, ZHANG Lei, MA Wen-Gao
Korla Branch of GRI of BGP Inc.,CNPC,Korla 841000,China
全文: PDF(6873 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

塔里木盆地塔河南岸富满油田超深层奥陶系灰岩地层缝洞型油藏现如今是油田产能建设的核心靶区。研究区储层是受走滑断裂作用控制地层破裂形成的大量溶蚀孔洞,非均质性强。而常规波阻抗反演的低频模型是由层位、断裂和测井数据建立起来的,不能表征储层的断控非均质性。为此,提出以“断裂破碎带相”为约束的迭代反演方法来预测储层,其技术流程是先对原始地震数据进行解释性处理,得到能反映储层断裂破碎带特征的属性体,将其与常规波阻抗反演得到的优质储层空间轮廓数据和初始低频模型进行比例融合,生成新的非均质性低频模型,进而开展多轮次迭代反演。反演结果可真实地刻画非均质储层断裂破碎带特征,10口井的预测吻合率可达92.86%。应用表明,该方法改善了储层预测效果,提高了断控储层的预测精度,有效地支撑了研究区的工作。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张明
李相文
金梦
郑伟
张磊
马文高
关键词 富满油田碳酸盐岩缝洞型储层断裂破碎带相迭代反演    
Abstract

The ultradeep Ordovician limestone fracture-vug reservoirs in the Fuman oilfield on the south bank of the Tahe River in the Tarim Basin is the core target area for the production capacity construction of the oilfield.These reservoirs in the study area contain massive dissolution vugs formed by the formation fracturing due to the strike-slip faulting and thus are highly heterogeneous.The low-frequency models based on conventional wave impedance inversion are built using data on horizons,faults,and logs,and thus they cannot characterize the fault-controlled heterogeneity of the reservoirs.For this reason,this study proposed an iterative inversion method constrained by fault fractured zone facies to predict reservoirs.The technical process of this method is as follows.First,the original seismic data were interpreted to obtain the attribute volumes that can reflect the characteristics of the fault fractured zones of the reservoirs.Then,the attribute volumes were proportionally fused with the initial low-frequency model and the spatial profile data of high-quality reservoirs obtained from the conventional inversion based on wave impedance.As a result,a new heterogeneous low-frequency model was formed.Using this model,multiple rounds of iterative inversions were conducted.The inversion results can truly describe the characteristics of the fault fractured zones in the heterogeneous reservoirs.The prediction results of 10 wells had coincidence rates of up to 92.86%.As indicated by the application,the method proposed in this study can improve the reservoir prediction performance and the prediction precision of fault-controlled reservoirs,thus effectively supporting the work in the study area.

Key wordsFuman oilfield    Carbonate    fracture-vug reservoir    fault fractured zone facies    iterative inversion
收稿日期: 2022-02-11      修回日期: 2022-12-08      出版日期: 2023-02-20
ZTFLH:  P631.4  
基金资助:国家重点研发计划项目“非常规油气地震波探测中规模数据的工业化应用”(2020YFA0713404)
通讯作者: 李相文(1984-),男,博士,高级工程师,主要从事碳酸盐岩解释方法及地质综合研究工作。 Email:lxw8225755@163.com
作者简介: 张明(1986-),男,2012年硕士毕业于长江大学地球探测与信息技术专业,主要从事针对塔里木盆地奥陶系碳酸盐岩的地震资料解释和综合地质研究工作。Email:zhangming05@cnpc.com.cn
引用本文:   
张明, 李相文, 金梦, 郑伟, 张磊, 马文高. 超深断控缝洞型储层迭代反演方法——以富满油田为例[J]. 物探与化探, 2023, 47(1): 22-30.
ZHANG Ming, LI Xiang-Wen, JIN Meng, ZHENG Wei, ZHANG Lei, MA Wen-Gao. Iterative inversion method for ultradeep fault-controlled fracture-vug reservoirs:A case study of the Fuman oilfield,Tarim Basin. Geophysical and Geochemical Exploration, 2023, 47(1): 22-30.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1049      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I1/22
Fig.1  走滑断裂破碎带岩溶模式(a)和储层地震反射特征剖面(b)
TS—志留系底; T O 3 t—奥陶系一间房组底; T 3—上寒武统底
Fig.2  相控迭代反演方法流程
Fig.3  富源Ⅲ期区块奥陶系断裂破碎带微储层刻画效果
a—原始地震剖面;b—微储层甜点属性剖面;c—断裂破碎带空间轮廓剖面
Fig.5  富源Ⅲ期区块奥陶系常规均质低频模型(a)和与断裂破碎带相融合后的非均质性低频模型(b)
Fig.5  富源Ⅲ期区块常规确定性反演结果与相控(断裂破碎带相)反演结果对比剖面
a—原始地震剖面;b—常规确定性反演剖面;c—相控(断裂破碎带相)反演剖面
Fig.6  富源Ⅲ期区块目的层波阻抗均方根属性平面图对比
a—常规确定性反演平面;b—相控(断裂破碎带相)反演平面
Fig.7  富源Ⅲ期区块相控(断裂破碎带相)反演结果对井分析
Fig.8  富源Ⅲ期区块C井目的层段测井波阻抗和反演波阻抗结果对比
a—目的层段测井波阻抗(计算)和反演波阻抗(提取)曲线对比;b—分布直方图
井号 漏失(放空)
深度/m
漏失量
/m3
反演阻抗值
/(g·cm-3·
m·s-1)
是否
吻合
well3C 7564.32~7567.67 1484.05 16981
well303-H1
well303-H1
5042.00 534.66 17094
7138.07~7280.00 2153.90 16405
well303-H7 7140.70~7383.00 2118.90 16848
well303H 7316.63 2203.39 16742
well25-H14
well25-H14
7019.32 0.50 17180
7308.32~7351.00 273.10 17113
well25-H6
well25-H6
2376.85~6818.00 503.00 16912
6943.87~7026.00 1877.70 16891
well25-H8 7086.66~7203.00 678.80 17101
well302H 7112.02~7226.66 1826.87 16603
well32 7547.00 476.40 17086
well32-H1
well32-H1
7219.36 22.00 17132
5100.00 1292.30 16675
Table 1  富源Ⅲ期区块10口井反演结果吻合情况统计
[1] 杜金虎, 周新源, 李启明, 等. 塔里木盆地碳酸盐岩大油气区特征与主控因素[J]. 石油勘探与开发, 2011, 38(6):652-661.
[1] Du J H, Zhou X Y, Li Q M, et al. Characteristics and main controlling factors of carbonate oil and gas areas in Tarim Basin[J]. Petroleum Exploration and Development, 2011, 38(6):652-661.
doi: 10.1016/S1876-3804(12)60002-0
[2] 邬光辉, 庞雄奇, 李启明, 等. 克拉通碳酸盐岩构造与油气:以塔里木盆地为例[M]. 北京: 科学出版社, 2016.
[2] Wu G H, Pang X Q, Li Q M, et al. The structural characteristics of Carbonate rocks and their effects on hydrocarbon exploration in Craton basin:A case study of the Tarim Basin[M]. Beijing: Science Press, 2016.
[3] 韩剑发, 苏洲, 陈利新, 等. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力[J]. 石油学报, 2019, 40(11):1296-1310.
doi: 10.7623/syxb201911002
[3] Han J F, Su Z, Chen L X, et al. Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(11):1296-1310.
doi: 10.7623/syxb201911002
[4] 刘立峰, 孙赞东, 杨海军, 等. 缝洞型碳酸盐岩储层地震综合预测——以塔里木盆地中古21井区为例[J]. 中南大学学报:自然科学版, 2011, 42(6):1731-1737.
[4] Liu L F, Sun Z D, Yang H J, et al. Comprehensive seismic prediction of fractured-vuggy carbonate reservoirs:A case study of ZG21 well area in Tarim Basin[J]. Journal of Central South University:Natural Science Edition, 2011, 42(6):1731-1737.
[5] 温志新, 王红漫, 漆立新, 等. 塔河油田奥陶系缝洞型碳酸盐岩储层预测研究[J]. 地学前缘, 2008, 15(1):94-100.
[5] Wen Z X, Wang H M, Qi L X, et al. Prediction of Ordovician fractured-vuggy carbonate reservoir in Tahe Oilfield[J]. Earth Science Frontiers, 2008, 15(1):94-100.
[6] 王世星, 曹辉兰, 靳文芳, 等. 碳酸盐岩缝洞系统地震响应特征分析和塔中卡1区缝洞储层预测[J]. 石油物探, 2005, 44(5):421-427.
[6] Wang S X, Cao H L, Jin W F, et al. Seismic response and prediction of fracture-cavity system in carbonate reservoir:A case study in the Ka-1 field[J]. Geophysical Prospecting for Petroleum, 2005, 44(5):421-427.
[7] 高君, 黄捍东, 季敏, 等. 碳酸盐岩储层地震相控非线性反演技术及应用[J]. 石油物探, 2020, 59(3):396-403.
[7] Gao J, Huang H D, Ji M, et al. Seismic phase-controlled nonlinear inversion of a carbonate reservoir[J]. Geophysical Prospecting For Petroleum, 2020, 59(3):396-403.
[8] 邹义, 李强, 杨洋, 等. 约束稀疏脉冲反演在哈得逊油田开发中的应用[J]. 石油地质与工程, 2015, 29(1):101-104.
[8] Zou Y, Li Q, Yang Y, et al. Application of constrained sparse pulse inversion in the development of Hadexun Oilfield Petroleum[J]. Geology and Engineering, 2015, 29(1):101-104.
[9] 李杨. 碳酸盐岩岩石物理与油气储层识别[D]. 成都: 成都理工大学, 2011.
[9] Li Y. Rock physics and oil and gas reservoir Identification of Carbonate rocks[D]. Chengdu: Chengdu University of Technology, 2011.
[10] 康玉柱. 中国古生代海相油气田发现的回顾与启示[J]. 石油与天然气地质, 2007, 28(5):570-575.
[10] Kang Y Z. Review and revelation of oil/gas discoveries in the Paleozoic marine strata of China[J]. Oil & Gasgeology, 2007, 28(5):570-575.
[11] 韩剑发, 张海祖, 于红枫, 等. 塔中隆起海相碳酸盐岩大型凝析气田成藏特征与勘探[J]. 岩石学报, 2012, 28(3):769-782.
[11] Han J F, Zhang H Z, Yu H F, et al. Hydrocarbon accumulation characteristic and exploration on large marine carbonate condensate field in Tazhong Uplift[J]. Acta Petrologica Sinica, 2012, 28(3):769-782.
[12] 田军, 王清华, 杨海军, 等. 塔里木盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3):272-282.
[12] Tian J, Wang Q H, Yang H J, et al. Petroleum exploration history and enlightenment in Tarim Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3):272-282.
[13] 朱光有, 杨海军, 朱永峰, 等. 塔里木盆地哈拉哈塘地区碳酸盐岩油气地质特征与富集成藏研究[J]. 岩石学报, 2011, 27(3):827-844.
[13] Zhu G Y, Yang H J, Zhu Y F, et al. Study on petroleum geological characteristics and accumulation of carbonate reservoirs in Hanilcatam area,Tarim basin[J]. Acta Petrologica Sinica, 2011, 27(3):827-844.
[14] 杜金虎, 王招明, 李启明, 等. 塔里木盆地寒武-奥陶系碳酸盐岩油气勘探[M]. 北京: 石油工业出版社, 2010:1-4.
[14] Du J H, Wang Z M, Li Q M, et al. Oil and gas exploration of Cambrian-Ordovician Carbonate in Tarim Basin[M]. Beijing: Petroleum Industry Press, 2010:1-4.
[15] Marfurt K J. Robust estimates of 3D reflector dip and azimuth[J]. Geophysics, 2006, 71(4):29-40.
[16] Chopra S, Marfurt K J. Adopting multispectral dip components for coherence and curvature attribute computations[J]. The Leading Edge, 2020, 39(8):593-596.
doi: 10.1190/tle39080593.1
[17] Al-Dossary S, Marfurt K J, Bakker P, et al. Volumetric dip and azimuth[C]// Society of Exploration Geophysicists,Geophysical Developments Series, 2007:25-44.
[18] Kuwahara M, Hachimura K, Eiho S, et al. Processing of RI-angiocardiographic images.In Digital Processing of Biomedical Images[M]. Boston,MA,USA, 1976:187-202.
[19] Li X W, Li J Y, Li L, et al. Seismic wave field anomaly identification of ultra-deep heterogeneous fractured-vuggy reservoirs:A case study in Tarim Basin,China[J]. Applied Sciences, 2021, 11(24):11802.
doi: 10.3390/app112411802
[20] 姚清洲, 孟祥霞, 张虎权, 等. 地震趋势异常识别技术及其在碳酸盐岩缝洞型储层预测中的应用——以塔里木盆地英买2井区为例[J]. 石油学报, 2013, 34(1):101-106.
[20] Yao Q Z, Meng X X, Zhang H Q, et al. Principles and application of a seismic trend anomaly diagnostic technique:A case study on carbonate fractured-cavity reservoirs in Yingmai 2 area,Tarim Basin[J]. Acta Petrolei Sinica, 2013, 34(1):101-106.
[21] Li X W, Li J Y, Liu Y L, et al. Improved workflow for identifying fault controlled fractured-vuggy body sweets of Ultra deep tight limestone[C]// 82nd EAGE Annual Conference & Exhibition, 2021:1-5.
[22] 郭朝斌, 杨小波, 陈红岳, 等. 约束稀疏脉冲反演在储层预测中的应用[J]. 石油物探, 2006, 45(4):397-400.
[22] Guo C B, Yang X B, Chen H Y, et al. Constrained sparse pulse inversion research in north of Haitongji depression[J]. Geophysical Prospecting for Petroleum, 2006, 45(4):397-400.
[1] 张昭, 殷全增, 张龙飞, 张大明, 张世晖, 黄国疏, 赵石峰, 杨彪, 台立勋, 张灯亮, 王进朝, 段刚. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
[2] 任宪军, 李钟, 马应龙, 董萍, 田行达. 地震分频迭代反演在薄层河道砂体预测中的应用[J]. 物探与化探, 2023, 47(2): 420-428.
[3] 但光箭, 周成刚, 刘云宏, 李相文, 张亮亮, 张明, 王春阳. 轮古西地区奥陶系碳酸盐岩古暗河系统地震特征分析[J]. 物探与化探, 2023, 47(2): 290-299.
[4] 陈星河, 张超谟, 朱林奇, 张冲, 张占松, 郭建宏. 联合核磁共振测井与Thomeer模型评价碳酸盐岩储层饱和度[J]. 物探与化探, 2023, 47(1): 110-119.
[5] 张建伟, 杨卓静, 王新杰, 李胜涛, 赵玉军. 碳储深孔超声成像测井系统设计与应用[J]. 物探与化探, 2022, 46(6): 1500-1506.
[6] 罗卫锋, 胡志方, 甘伏平, 张庆玉, 康海霞, 张云枭. 南方碳酸盐岩地区页岩气钻探井位选址中的综合物探方法应用[J]. 物探与化探, 2022, 46(4): 824-829.
[7] 薛野, 杨帆, 刘厚裕, 刘明, 赵苏城, 蓝加达. 彭水地区碳酸盐岩山地地表地震激发接收因素优选及效果[J]. 物探与化探, 2022, 46(3): 608-617.
[8] 郝爽. 基于目标性滤波器的倾角道集绕射体成像[J]. 物探与化探, 2020, 44(3): 591-598.
[9] 马修刚, 周军, 蔡文渊, 王伟, 于伟高, 曹先军, 孙佩. 反射波成像与纵波径向速度成像在华北油田裂缝型碳酸盐岩储层勘探开发中的联合应用[J]. 物探与化探, 2020, 44(2): 271-277.
[10] 詹少全, 丁梅花, 李爱勇, 王慧, 王导丽, 梁杰. 贵州碳酸盐岩山区广域电磁法勘探应用[J]. 物探与化探, 2020, 44(1): 88-92.
[11] 杨敬雅, 李相文, 刘永雷, 徐博, 高江涛, 王茂, 吴江勇, 张泉. 一种基于随钻VSP地震地质导向的钻井轨迹高效优化方法及其应用[J]. 物探与化探, 2019, 43(2): 257-265.
[12] 党青宁, 崔永福, 陈猛, 赵锐锐, 刘伟明, 李勇军. OVT域叠前裂缝预测技术——以塔里木盆地塔中ZG地区奥陶系碳酸盐岩为例[J]. 物探与化探, 2016, 40(2): 398-404.
[13] 代鹏, 丁文龙, 曹自成, 余腾孝, 王鑫玉, 邱华标. 塔里木盆地塔中南坡地区奥陶系优质海相碳酸盐岩储层测井评价[J]. 物探与化探, 2016, 40(2): 243-249.
[14] 李相文, 刘永雷, 但光箭, 安海亭, 张建伟, 赵婧, 李梁, 李树珍. 方位AVO技术在碳酸盐岩缝洞型储层含流体预测中的研究与应用[J]. 物探与化探, 2016, 40(1): 129-134.
[15] 杨宋玲, 李方林, 黄建军, 王娟, 黄梦妮, 王祥, 周青. 碳酸盐岩风化过程中次生富集作用对土壤地球化学异常评价的影响——以浙江下铜山铅锌异常评价为例[J]. 物探与化探, 2015, 39(6): 1124-1131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com